Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Действие ультразвука на электрохимические процессы

Обезжиривание обычно производится промывкой в ваннах или моечных машинах с применением подогретых щелочных растворов либо путем протирки, либо промывки в специальных моечных агрегатах с помощью органических растворителей, а также путем электрохимической обработки. В табл. 11 приводятся способы обезжиривания поверхности металлов. Процессы обезжиривания значительно интенсифицируются действием ультразвука. За последние годы получил широкое распространение метод совместного травления и обезжиривания, сокращающий процесс подготовки деталей и узлов перед окраской и исключающий применение органических растворителей.  [c.107]


ДЕЙСТВИЕ УЛЬТРАЗВУКА НА ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ  [c.531]

Действие ультразвука на электрохимические процессы  [c.537]

Наиболее эффективным способом травления в случае образования больших, плотных и клейких окалин является использование расплавленных солей (едкого натра или гидрида натрия NaH). Химическое воздействие на окалину расплавленной соли сочетается с нарушением сплошности окалины за счет различия коэффициентов линейного расширения окалины и основного металла под действием тепла при погружении изделия в ванну с расплавленным раствором. Этот метод травления находит все более широкое применение и дает наибольший эффект при сведении процессов удаления окалины и термообработки в одну операцию. Однако при этом требуются специальное оборудование и квалифицированные рабочие. Процесс является дорогостоящим и опасным. Кроме того, его нельзя применять в том случае, если воздействие высоких температур неблагоприятно скажется на механических свойствах металла, с которого удаляется окалина. Что касается химической очистки, то электрохимическое воздействие (анодная либо катодная поляризация) или использование ультразвука может улучшить действие травления.  [c.60]

Использование ультразвукового поля при изучении кинетики электрохимических реакций позволяет более глубоко раскрыть механизм происходящих процессов. Если воздействие ультразвука на катодное восстановление металлов в основном сводится к размешивающему эффекту, то при анодном растворении его действие более разнообразно он разрушает защитные пленки, десорбирует анионы, увеличивает энергию ионов в растворе и энергию атомов в кристаллической решетке.  [c.183]

Интенсификация электрохимических процессов под действием ультразвука приобретает в последнее время все больший практический интерес для гальванотехники. И весьма подходящими излучателями для этой цели являются ферритовые преобразователи. Это обусловливается следующими причинами 1) интенсивность ультразвука, применяемого в гальванотехнике, не превышает 0,3—1 вт/см , а такую интенсивность могут надежно обеспечить ферритовые излучатели, она заметно ниже их предельной интенсивности 2) ферриты не подвержены действию коррозии в химически активных средах и потому могут погружаться в гальванические ванны это обстоятельство весьма важно, так как погружаемый  [c.144]

В настоящее время механизм воздействия ультразвука на химические и электрохимические процессы выяснен недостаточно. Существует лишь ряд предположений. Очевидно, что влияние ультразвука объясняется кавитационными явлениями, интенсивным перемешиванием при этом жидкости, мгновенно меняющимися перепадами температур и давлений, электрическими явлениями, возникающими при кавитации. Некоторые авторы отмечают, что ультразвук влияет на энергию дегидратации ионов, способствует преимущественной ориентации ионов и молекул, принимающих участие в электродных реакциях, уменьшению градиента концентрации разряжающихся ионов в прика-тодном слое электролита, повышению предельного тока диффузии и в целом влияет на поляризацию электрода. Ультразвук оказывает также диспергирующее и десорбирующее действие при обработке изделий в жидкостях, что может влиять на протекание собственно электрохимической 1стадии электродного процесса.  [c.103]


Для интенсификации нек-рых технологич. процессов, осуществляемых в жидкости, используются воздействие ультразвука на электрохимические процессы и химическое действие ультразвука. Интенсификация электрохимич. процессов в УЗ-вом поле обусловлена связанными с кавитацией явлениями перемешиванием электролита с выравниванием концентрации ионов, дегазацией электролита, увеличением активной поверхности катода благодаря очистке одновременно имеет место улучшение качества покрытия (мелкозернистость), а в ряде случаев возможно электроосаждение металлов, неосуществ л яемое в отсутствии УЗ. Инициирование химич. реакций в жидкостях в подавляющем большинстве случаев также связано с кавитацией, под воздействием к-рой происходит расщепление молекул (в основном воды) на радикалы, ионизация и т. п. Существенным оказывается и воздействие УЗ на макромолекулы, приводящее к деструкции молекул полимеров. Ряд химич. технологич. процессов интенсифицируется под действием различных УЗ-вых эффектов в жидкостях эмульгирования, диспергирования, дегазации, локального нагревания. Такая связь различных проявлений воздействия УЗ характерна для большинства УЗ-вых технологич. процессов.  [c.20]

ВОЗДЕЙСТВИЕ УЛЬТРАЗВУКА НА ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ. Процессы электрохимич. осаждения металлов, используемые в технике для нанесения металлич. покрытий, могут интенсифицироваться под действием УЗ. При прохождении постоянного тока через электролит на катоде выделяются атомы металла, к-рые образуются в результате присоединения электронов к ионам электролита. Эффективность этого процесса характеризуют т. н. выходом металла по току, т. е. отношением фактически выделенного на катоде вещества к теоретически возможному по закону Фарадея. В обычных условиях выход металла по току с увеличением плотности тока резко падает. Это обусловлено, во-первых, тем, что при прохождении тока концентрация ионов в электролите становится неравномерной и вблизи катода он обедняется, т. е. число ионов металла уменьшается. Во-вторых, на катоде выделяется водород, ионы к-ро-го вместе с гидроксильными группами содержатся в водном растворе электролита при этом прикатод-ное пространство обогащается газовой фазой. В результате процессы электроосаждения идут при значительном перенапряжении на катоде (т. е. повышается необходимый для проведения процесса потенциал катода), это и обусловливает уменьшение выхода металла по току и увеличение  [c.63]

К процессам У. т. в газах относятся коагуляция аэрозолей, низкотем пературная сушка, горение в ультразвуковом поле. В жидкостях — это в первую очередь очистка, к-рая по-лучила наиболее широкое распространение среди всех процессов У. т., а также травление, эмульгирование, воздействие ультразвука на электрохимические процессы, диспергирование, дегазация, кристаллизация. Процес-сы УЗ-вой дегазации и диспергирования в жидких металлах, а также воздействие УЗ на кристаллизацию металлов играют важную роль при использовании ультразвука в металлургии, кавитация в жидких металлах используется при УЗ-вой металлизации и пайке. УЗ-вые методы обработки твёрдых тел основываются на непосредственном ударном воздействии колеблющегося с УЗ-вой частотой инструмента, а также на влиянии УЗ-вых колебаний на процессы трения и пластической деформации. Ударное воздействие УЗ используется при размерной механической обработке хрупких и твёрдых материалов с применением абразивной суспензии и ири поверхностной обработке металлов, выполняемой с целью их упрочнения. Снижение трения под действием УЗ используется для повышения скорости резания этот же эффект, наряду с эффектом увеличения пластичности под действием УЗ, используется в процессах обработки металлов давлением (волочение труб и проволоки, прокатка). К методам У. т. относится также УЗ-вая сварка, поз-  [c.350]

ФИЗИКО-ХИМИЧЕСКОЕ ДЕЙСТВИЕ УЛЬТРАЗВУКА. Акустич. колебания могут оказывать существенное влияние на течение неравновесных процессов в замкнутой системе. К ним относится целый ряд процессов химич. технологии — механич., гид-ромеханич., тепловые и массообменные. Характер воздействия УЗ на физико-химич. процессы может быть различным стимулирующим — в тех случаях, когда он является движущей силой процесса, как, наир., в процессах УЗ-вого диспергирования, распыления, эмульгирования, УЗ-вой коагуляции и очистки, интенсифицирующим — в тех случаях, когда УЗ лишь увеличивает скорость процесса (наир., в процессах УЗ-вого растворения, травления, экстрагирования, УЗ-воп кристаллизации и сушки, при воздействии ультразвука на электрохимические процессы), оптимизирующим — в тех случаях, когда УЗ лишь упорядочивает течение процесса, как, напр., в процессах акустич. грануляции и центрифугирования, прп воздействии на режим горения в ультразвуковом поле.  [c.363]


По механизму ультразвукового воздействия процессы можно разбить на четыре основных группы 1) превращения, где ультразвук влияет на диффузию реагирующих веществ на границе раздела фаз 2) процессы внутри капиллярно-пористых тел, заполненных жидкостью 3) перенос жидкой среды внутри капиллярно-пористых тел, заполненных газом 4) нарушение коллоидных структур (пентизация) в пограничном слое и тиксотрон-ных явлений в объеме среды. В некоторых превращениях звук воздействует по комплексному механизму, например, в процессах электрохимического или химического осаждения и растворения металлов, где наряду с ускорением массопереноса веществ проявляется пентизирующее действие звуковых колебаний.  [c.517]

Изучение действия ультразвукового поля на скорость электрохимической реакции началось сравнительно недавно, поэтому сейчас еще трудно указать на те возможности, которые откроются в этом направлении. Наибольшее внимание уделялось использованию ультразвука при обезжиривании к травлении металлов. В данном случае получены очень хорошие результаты, показывающие, что применсн1 е ультразвука значительно ускоряет процесс очистки металлов от жировых и окисных загрязнений.  [c.17]


Смотреть страницы где упоминается термин Действие ультразвука на электрохимические процессы : [c.160]    [c.7]   
Смотреть главы в:

Ультразвук и его применение в науке и технике Изд.2  -> Действие ультразвука на электрохимические процессы



ПОИСК



Действие ультразвука на бактерии электрохимические процессы

Процесс электрохимический

Ультразвук

Электрохимический

Электрохимическое действие ультразвук



© 2025 Mash-xxl.info Реклама на сайте