Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетическое уравнение в диаграммной технике

Структура уравнения (6.3.85) фактически такая же, как и структура уравнений для различных Т-матриц, которые вводились в первом томе. На языке диаграммной техники второй член в формуле (6.3.83) представляет собой результат суммирования бесконечной последовательности так называемых лестничных диаграмм, описывающих столкновение двух частиц в среде [55]. Поэтому приближение Т-матрицы для временных функций Грина применяется в квантовой кинетической теории систем с сильным короткодействующим потенциалом взаимодействия.  [c.56]


Многие величины в неравновесной статистической механике, например, кинетические коэффициенты в уравнениях переноса и ядра в основных кинетических уравнениях, выражаются через временные корреляционные функции с приведенным оператором эволюции, который содержит проектирование. Если взаимодействие является слабым или мал параметр плотности, такие корреляционные функции можно вычислить, применяя теорию возмущений (см., например, главу 7). Однако во многих физически интересных случаях нельзя ограничиться несколькими членами ряда теории возмущений, поэтому необходим метод, позволяющий проводить суммирование бесконечных последовательностей главных членов. Для корреляционных функций с приведенным оператором эволюции пока не удалось разработать метод такого суммирования, аналогичный диаграммной технике для функций Грина.  [c.283]

Мы приступим теперь к построению диаграммной техники, пригодной в принципе для вычисления гриновских функций систем, находящихся в произвольных неравновесных состояниях. Получаемые в этой технике уравнения для гриновских функций по своему смыслу аналогичны кинетическим уравнениям. В применении же к равновесным системам эта же техника позволяет получить гриновские функции и обобщенные восприимчивости  [c.468]

Кинетическое уравнение в диаграммной технике  [c.483]

Итак, мы видели, что для учета эффектов обрезания траекторий частиц на длине свободного пробега необходимо просуммировать бесконечную последовательность членов в цепочке уравнений для приведенных функций распределения. Типичный подход к решению подобных проблем состоит в применении диаграммной техники , дающей графическое представление рассматриваемых величин и позволяющей сформулировать простые правила, с помощью которых может быть выписан любой член теории возмущений. В классической кинетической теории диаграммная техника такого рода была впервые разработана Балеску [56, 57]. В настоящем разделе будет рассмотрен ее вариант [26], который позволяет в удобной форме учесть граничные условия для приведенных функций распределения. Будут сформулированы правила построения диаграмм для приведенных функций распределения и интеграла столкновений в любом порядке теории возмущений по плотности. Кроме того, мы рассмотрим несколько простых примеров вывода кинетических уравнений с помощью диаграммного метода.  [c.181]


В этой формуле 5-й член есть сумма всех сильно связных 5-частичных диаграмм, имеющих одну свободную линию на левом конце. Вклад 5-го члена пропорционален поэтому формула (3.2.18) дает разложение интеграла столкновений по плотности. Интересно провести сравнение диаграммного представления интеграла столкновений с групповым разложением, рассмотренным в разделе 3.1.5. Основное различие между выражениями (3.1.73) - (3.1.75) и формулой (3.2.18) состоит в том, что метод групповых разложений приводит к марковскому интегралу столкновений в то время как в каждом члене диаграммного разложения (3.2.18) имеется запаздывание. Вообще говоря, диаграммное представление интеграла столкновений также можно свести к выражению, локальному во времени. Для этого диаграммная техника должна быть модифицирована таким образом, чтобы функции распределения fiit — т) выражались через функции fi t). Хотя эта версия диаграммной техники фактически эквивалентна групповым разложениям, она позволяет, в принципе, проводить частичное суммирование, что и является наиболее важным преимуществом диаграммных методов [72]. Следует, однако, отметить, что для кинетических уравнений с запаздыванием правила записи математических выражений, соответствующих диаграммам, и процедура суммирования значительно проще. В связи с этим в дальнейшем мы будем пользоваться диаграммным представлением интеграла столкновений в форме (3.2.18). Марковское приближение будет рассматриваться в каждом конкретном случае.  [c.192]


Смотреть главы в:

Физическая кинетика  -> Кинетическое уравнение в диаграммной технике



ПОИСК



Кинетические уравнения



© 2025 Mash-xxl.info Реклама на сайте