Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О разрешающих уравнениях . 4. Граничные, или краевые, условия

Эту краевую задачу можно сформулировать в других терминах, перейдя от одного дифференциального уравнения порядка 2п к системе порядка 2п, состоящей из 2п дифференциальных уравнений, каждое из которых, будучи первого порядка, разрешено относительно производной от одной из искомых функций. Такая форма системы называется нормальной формой Коши. Разумеется,, что при указанном переходе подвергаются соответствующей модификации и граничные условия (12.202). Выполняется это следующим образом.  [c.274]


Изложенный способ решения алгебраической системы уравнений парогенератора аналогичен решению краевой задачи для системы линейных дифференциальных уравнений путем сведения ее к нескольким задачам Коши. По существу математическая модель трактов рабочей среды представляет собой краевую задачу для уравнений гидродинамики с граничными условиями, заданными на концах интервала изменения координаты длины. Хотя дифференциальное уравнение движения рабочей среды и аппроксимировано в рассматриваемой модели системой алгебраических уравнений сопротивления на участках, следующих друг за другом, такая схема решения оказывается наиболее экономной. Ее удобно применять потому, что при описании моделируемая система представлена как совокупность ориентированных звеньев [Л. 77], для которых уравнения вход —выход разрешены в явном виде относительно выходов. Для каждого звена выходы легко рассчитываются, если известны входы. Эта форма уравнений звеньев обусловливает выбор метода решения системы уравнений, оиисывающей взаимосвязанные теплообменники.  [c.156]

Простейший нелинейный вариант теории осесимметричных многослойных анизотропных оболочек построен. Нормальная система уравнений (1.52), граничные условия (1.62), (1.63), соотаошения (1.54), (1.55), (1.57)—(1.59) и система линейных алгебраических уравнений (1.60) полностью разрешают поставленную задачу. Как видим, задача определения напряженно-деформированного состояния многослойных анизотропных оболочек вращения сведена к нелинейной краевой задаче (1.52), (1.62), (1.63), что позволяет применить к ее решению стандартный, хорошо изученный на более простых задачах подход.  [c.27]


Смотреть главы в:

Общая теория анизотропных оболочек  -> О разрешающих уравнениях . 4. Граничные, или краевые, условия



ПОИСК



I краевые

Граничные уравнения

Граничные условия

О разрешающих уравнениях и граничных условиях

Разрешающее уравнение

Уравнения Условия краевые

Уравнения и граничные условия

Условия граничные (краевые)

Условия краевые



© 2025 Mash-xxl.info Реклама на сайте