Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон Архимеда полной

Решения отдельных частных вопросов гидростатики, т. е. разделы гидравлики, рассматривающие вопросы равновесия жидкостей, были даны еще Архимедом в 250 г. до н. э. в его трактате О плавающих телах , который считается первым научным трудом в области гидравлики. Известный закон Архимеда, определяющий силы давления жидкости на поверхность погруженного в нее тела, дошел в полной неприкосновенности до наших дней.  [c.6]

Известный закон Архимеда, определяющий силы давления жидкости на поверхность погруженного в нее тела, дошел в полной неприкосновенности до наших дней. В XIV веке знаменитый ученый Леонардо да Винчи (1452—1519) написал исследование О движении и измерении воды , которое, правда, было опубликовано только в XX столетии.  [c.7]


Полная сила гидростатического давления на всю поверхность конуса равна (по закону Архимеда)  [c.161]

Аналогия между кипящим слоем и жидкостью не ограничивается тем, что поведение инородных предметов в слое подчиняется законам плавания тел, в частности закону Архимеда. Псевдоожиженный зернистый материал обладает текучестью свободно перемещается при незначительном уклоне (1—2°), перетекает через пороги, более или менее равномерно располагается на опорной поверхности. Эти его свойства используются для непрерывного ввода (вывода) частиц, поддержания заданного уровня слоя в аппарате, транспортировки измельченного материала на различные расстояния. Кипящий слой подчиняется закону сообщающихся сосудов, что позволяет организовать направленную циркуляцию зернистого материала в аппаратах типа эрлифт . Свободная поверхность псевдоожиженного слоя практически горизонтальна в неподвижном сосуде и имеет форму цилиндра при вращении сосуда около его горизонтальной оси — в полном соответствии с законами гидростатики.  [c.76]

Так как далее будут рассматриваться только несжимаемые жидкости, то нет необходимости принимать во внимание в явном виде силы тяжести, действующие на жидкость. Таким образом,, более правильно интерпретировать р как гидродинамическое, а не как полное давление. Первое не включает в себя гидростатическое давление. В соответствии с принятым определением давления р силу F, представленную уравнением (2.3.1), удобно определить как гидродинамическую силу, действующую на тело со стороны жидкости. Она равна нулю для жидкости, находящейся в покое. Так как на самом деле гравитация всегда действует на жидкость, то для того, чтобы получить полную силу, действующую со стороны жидкости на тело, необходимо добавить к уравнению (2.3.1) выталкивающую силу, действующую на тело. Согласно закону Архимеда, эта дополнительная сила равна весу жидкости, вытесненной телом. Если g — вектор ускорения свободного падения, направленный вертикально вниз (предполагается, что он постоянен), и т/ — масса вытесненной жидкости, то выталкивающая сила равна  [c.46]

Полагая пока, что поверхность грунта совпадает с горизонтальной поверхностью воды (рис. 38), установим, что полное вертикальное напряжение, приходящееся на частицу грунта, получается в соответствии с законом Архимеда как разность напряжений от веса грунта и взвешивающего действия воды  [c.55]

ВОДОИЗМЕЩЕНИЕ, количество вытесненной судном воды, вес к-рой согласно закону Архимеда равен полному весу судна. Различают объемное и весовое В. Расчетное объемное В. равно объему подводной части судна без наружной обшивки и всех выступающих подводных частей корпуса (руль, штевни, киль, гребные винты и их кронштейны и т. д.) измеряется оно в или фт. и выражается произведением длины судна L, ширины его В и осадки Т на коэф. полноты водоизмещения а, т. е. V = а L В Т. Весовое В., равное весу судна, измеряется произведением объемного В. на плотность воды (1,000 для пресной воды в умеренном климате, 1,015 — для воды Балтийского моря и 1,025 для океанов) и дается в метрических или английских тоннах (1 016 кг]. Для одного и того же судна В. не является постоянной величиной, так как нагрузка судна все время меняется или вследствие приема тех или иных грузов или расхода на судне провианта, горючего, боевых припасов (на военных судах) и т. д. (см. Плавучесть судна).  [c.483]


С прикладной точки зрения не столь уж важно, почему эмпирически обнаруженная Эллиоттом формула цикла по какой-то неведомой причине все же работает. В конце концов, разве служит помехой для создания стальных кораблей, легко преодолевающих стихию волн, полная неосведомленность человечества в отношении того, почему действует закон Архимеда.  [c.181]

Изложенные выше результаты находят себе различные про стые применения. Одно из них относится к вычислению началь ного ускорения, получаемого наполненным водородом сферическим баллоном, который сразу освобожден от канатов. Предположим, что масса баллона составляет 7ю массы вытесненного им воздуха. Человек, не знающий о кажущейся массе, мог бы проделать следующие ошибочные вычисления. По закону Архимеда, полная подъемная сила равна произведению 9g на массу баллона поэтому (так можно было бы подсчитать) начальное ускорение должно равняться g. А в случае сферического бал-  [c.197]

Суммируя элементарные подъемные силы, получаем полную подъемную силу Р . Из зависимости (1.27) следует, что подъемная сила Рц равна весу жидкости, вытесненной погруженньш в нее телом, и направлена по вертикали снизу вверх. Это положение носит название закона Архимеда. На этом законе основана теория плавания тел. Подъемная сила приложена в центре погруженной части тела, называемом центром водоизмещения.  [c.23]

Сохранившиеся до нашего времени египетские пирамиды и другие остатки древних сооружений заставляют нас предполагать, что у древних народов имелись определенные познания об основных законах равновесия, без знания которых невозможны были бы такие величественные сооружения. Греческий философ Аристотель (384—322 гг. до н. э.) в своем труде Физика подытожил познания древних в области механики но основной закон, связывающий силу и движение, был им а юрмулирован неправильно, это было выяснено на 19 столетий позднее. Закон равновесия рычага — главный закон, на котором основано устройство всех машин, и законы равновесия плавающих тел были совершенно четко указаны знаменитым Архимедом (П1 век до н. э.). С этого времени и начинается развитие механики как науки в полном смысле этого слова. Ученые средних веков получили новые сведения о равновесии тел и о свойствах их, но и они продолжали придерживаться ложного представления Аристотеля об основном законе движения тел.  [c.17]

Архимеда, т. е. до времени Стевина (1548—1620), который в 1586 г. впервые занялся механикой наклонной плоскости, и Галилея (1564 — 1642), который сделал первое важное открытие в области кинематики. Таким образом механические принципы, относящиеся к движению тел, не были известны почти до нового времени. Основной ошибкой в рассуждениях большинства исследователей было их предположение о необходимости непрерывно действующей силы для поддержания движения тела. Они думали, что для тела более свойственно состояние покоя, чем движения, что противоречит закону инерции (первый закон Ньютона). Этот закон был открыт Галилеем совершенно случайно при изучении движения тел, скатывающихся по наклонной плоскости на горизонтальную поверхность. Галилей принял следующее основное положение изменение скорости или ускорение определяется силами, которые действуют на тело. Это положение содержит почти целиком два первые положения Ньютона. Галилей применил свои принципы с полным успехом при открытии законов падающих тел и законов движения снарядов. Благодаря своим открытиям он справедливо считается основателем динамики. Он первый применил маятник для измерения времени.  [c.43]

КОНВЕКЦИОННЫЙ ТОК, перенос электрич. зарядов, осуществляемый перемещением заряж. макроскопич. тела. С точки зрения электронной теории, любой перенос зарядов в конечном счёте обусловлен конвекцией (перемещением) заряж. микрочастиц. Этим объясняется полная тождественность магн. св-в К. т. и тока проводимости (упорядоченного движения эл-нов, ионов и т.п.), установленная в опытах амер. физика Г. Роуланда (1879) и А. А. Эйхенвальда (1903). КОНВЕКЦИЯ (от лат. сопуес11о — принесение, доставка), перенос теплоты в жидкостях, газах или сыпучих средах потоками в-ва. Естественная (свободная) К. возникает в поле силы тяжести при неравномерном нагреве (нагреве снизу) текучих или сыпучих в-в. Нагретое в-во под действием архимедовой силы Р(Др — разность плотности нагретого в-ва и окружающей среды, V — его объём, д — ускорение свободного падения см. Архимеда закон) перемещается относительно менее нагретого в-ва в направлении, противоположном направлению силы тяжести. К. приводит к выравниванию темп-ры в-ва. При стационарном подводе теплоты к в-ву в нём возникают стационарные конвекц. потоки. Интенсивность К. зависит от разности темп-р между слоями, теплопроводности и вязкости среды.  [c.307]



Сборник задач по гидравлике и газодинамике для нефтяных вузов (1990) -- [ c.158 ]



ПОИСК



Архимед

Архимеда закон



© 2025 Mash-xxl.info Реклама на сайте