Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фокусирование ультразвуковых волн

Наличие кавитационных полостей, обладаюш их большей по сравнению с жидкостью сжимаемостью, иногда вызывает падение среднего волнового сопротивления среды, в результате чего заметно падает (при той же амплитуде колебаний поверхности излучателя) отдаваемая излучателем в среду мош ность [1]. Чтобы поддержать постоянство излучаемой мош ности, нужно суш ественно увеличить амплитуду колебаний излучателя, а это как раз и ограничивается усталостно-прочностными свойствами материала. Однако даже при, реализации этого требования интенсивность в рабочей зоне, находяш ейся на некотором расстоянии от поверхности излучателя, будет всегда меньше, чем вблизи излучателя. Наконец, сама излучающая поверхность неизбежно подвергается кавитационной эрозии. От всех этих недостатков свободны системы, основанные на фокусировании ультразвуковых волн [2]. В таких системах интенсивность нарастает по мере приближения от излучающей поверхности к фокальной области по закону 1/г для цилиндрической и 1/г для сферической фокусировки. Поэтому появляется возможность создать требуемую интенсивность звука внутри строго локализованной цилиндрической или сферической области произвольного радиуса при существенно меньшей интенсивности, снимаемой с излучающей поверхности. При этом излучатель работает в нормальном, не форсированном режиме и не требует искусственного охлаждения отсутствует и кавитация у поверхности, отбирающая на свое образование часть звуковой энергии и разрушающая поверхность излучателя.  [c.151]


Фокусирование ультразвуковых волн  [c.43]

Фиг. 137. Фокусирование ультразвуковых волн путем отражения от вогнутого зеркала. Фиг. 137. Фокусирование ультразвуковых волн путем отражения от вогнутого зеркала.
Фокусирование ультразвуковых волн в одной точке можно, наконец, получить при помощи вогнутого зеркала, как это показано на фиг. 137. Для наилучшего отражения такое зеркало выполняют из тонкого стекла или металла образующих крышку камеры, заполненной воздухом.  [c.121]

Часть III посвящена фокусирующим ультразвуковым излучателям. Как известно, этот тип излучателей позволяет получать очень высокие интенсивности на некотором удалении от излучающей поверхности, предотвращая тем самым потери энергии на поглощение и на образование кавитации у поверхности излучателя. Наряду с теорией фокусирования сферических и цилиндрических ультразвуковых волн даются методы расчета фокусирующих излучателей и приводятся описания сверхмощных фокусирующих концентраторов, разработанных в Акустическом институте.  [c.5]

Ультразвуковые волны можно фокусировать при помощи звуковых вогнутых зеркал и линз. Однако существует метод фокусирования ультразвука, который не применяется для световых лучей, а именно фокусирование вогнутым излучателем. Для этого поверхности излучателей придают форму части сферы (рис. 20) или цилиндра. Звуковые волны, излученные этой поверхностью, будут собираться вблизи центра сферы, в фокальном пятне, или соответственно вблизи оси цилиндра, в фокальной полосе. Таким путем легко получить усиление интенсивности вне-сколько десятков раз. Подбирая соответствующие размеры  [c.43]

Визуализация изображения конкрементов, прицеливание ударной волны и контроль разрушения камней осуществляются в основном средствами рентгеновской техники или с помощью ультразвуковой аппаратуры. При рентгеновской флюороскопии (рис. 6) используют обычно два канала визуализации, расположенных под некоторым углом относительно друг друга. Каждый канал состоит из рентгеновского излучателя и усилителя рентгеновского изображения. Наличие двух каналов визуализации, расположенных под углом, позволяет осуществить привязку зоны разрушения конкремента (место фокусирования ударной волны) с геометрической точкой пересечения каналов визуализации. Это обстоятельство гарантируют возможность точного введения камня в зону дробления и визуальный контроль его при литотрипсии.  [c.179]


Ультразвуковые колебания представляют собой упругие волны, распространяющиеся с определенной скоростью в какой-либо материальной среде — газах, жидкостях, твердых телах. Колеблющийся источник звука периодически сближает примыкающие к нему частицы, которые передают это сжатие среды следующему прилегающему слою и волны сжатия, чередуясь с волнами разрежения, проходят все пространство, занимаемое данной средой. Скорость и направление распространения звуковых волн зависят от плотности и упругости среды, а также ее размеров. Особенностями высокоэнергетических ультразвуковых колебаний является возможность фокусирования энергии на сравнительно небольшую площадь рабочей зоны. Ультразвуковые колебания малой интенсивности, используемые для дефектоскопии и исследования вещества, подчиняются законам линейной акустики.  [c.8]

Используя принцип фокусирования ультразвуковых волн, можно получать очень большие интенсивности звуковой энергпп. Для этого нужно на небольшой площади фокального пятна собрать всю энергию, создаваемую излучателем с большой поверхностью. Диаметр фокального пятна приблизительно равен длине звуковой волны и, следовательно, тем меньше, чем выше рабочая частота.  [c.47]

Ф и г. 137а. Устройство для фокусирования ультразвуковых волн (по Бароне). Слева—схематическое изображение, справа—внешний вид.  [c.122]

Эта специфика прежде всего выражается в реальной и широко используемой возможности генерирования плоских или квазипло-ских волн, в особом значении импульсного режима излучения, в воздействии мощного ультразвука на среду и ее реакции на это воздействие, в сильном поглощении ультразвуковых волн в газах и возможности распространения сдвиговых волн в жидкостях, в отчетливом проявлении нелинейных акустических эффектов в жидкостях и твердых телах, постоянных сил в ультразвуковом поле и т. д. Соответственно на первое место в ультраакустике выходят вопросы распространения плоских волн, их поглощения, отражения, преломления, прохождения через слои, фокусирования, рассеяния, анализ нелинейных эффектов, пондеромоторных сил в поле плоских волн, дифракционных и интерференционных эффектов в поле реальных излучателей ультразвуковых пучков вместе с анализом отклонений характеристик ультразвукового поля в ограниченных пучках по сравнению с полем идеальных плоских волн, распространения различных типов ультразвуковых волн в безграничных и ограниченных твердых телах, в том числе — в кристаллах и пр. В насго-яи ей книге сделана попытка дать всем этим вопросам достаточно полное освещение в сочетании с другими аспектами распространения ультразвуковых волн. В книге приводятся также э сперимеп-тальные данные по скорости и поглощению ультразвука в л<идко-стях и газах, а также по скорости звука в изотропных твердых телах и кристаллах. Наряду с классическим материалом в ней использованы данные из оригинальных источников, на которые сделаны соответствующие ссылки.  [c.5]

Для расчета усиления ультразвука в фокусе собирательной линзы необходимо учитывать, кроме волновых сопротивлений, такие факторы, как зависимость коэффициента прохождения волны через линзу от угла падения, от поглощения ультразвука в материале линзы, влияние нелинейных эффектов иа фокусирование ультразвука. С детальным расчетом ультразвуковых фокусирующих устройств можно познакомиться по недавно изданной книге И. И. Каг.езского [60]. ]-1а рис. 42 приведена теневая фотография ультразвукового пучка, сфокусированного акустической линзой. (1 (мне-вой метод ви 5уализации ультразвуковых полей сводится к просветлению участков среды с измененным о1 тнческим показателем преломления [12]. Поско.1ьку последний меняется в фазе с плотностью, т. е. с давлением, то теневая фотография, экспонируемая в течение времени, значительно превышающего период ультразвуковых колебаний, регистрирует общее просветление области среды, занятой ультразвуковым пучком, позволяя изучить его структуру и геометрию).  [c.156]


Акустические системы. В измерительной технике находят применение эффекты, связанные с распространением ультразуковых колебаний. Использование ультразвукового диапазона вызвано необходимостью фокусирования пучка звуковых волн для передачи сигнала на большие расстояния.  [c.113]


Смотреть страницы где упоминается термин Фокусирование ультразвуковых волн : [c.94]    [c.137]    [c.172]    [c.178]    [c.200]    [c.821]    [c.453]    [c.308]    [c.370]   
Смотреть главы в:

Рассказ о неслышном звуке  -> Фокусирование ультразвуковых волн



ПОИСК



Луч ультразвуковой

Ультразвуковые волны



© 2025 Mash-xxl.info Реклама на сайте