Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физические условия при теплообмене конвекцией

В следующем разделе вначале будет показано, что задачу о теплообмене в условиях вынужденной конвекции в трубе произвольного поперечного сечения можно сформулировать на основе вариационного метода с использованием свертки. Будут рассмотрены два случая граничных условий заданная температура стенки и заданный градиент температуры на стенке. Затем этот вариационный метод будет использован для решения ряда частных задач с целью иллюстрации его приложений. В третьем разделе рассматривается простой случай течения и круглой трубе с постоянной по сечению скоростью. Хотя эта задача не имеет большого физического значения, ее точное решение известно, и его можно исиоль-зовать для сравнения с решением, полученным вариационным методом. Чтобы показать возможности настоящего вариационного метода, будут получены также точные решения системы алгебраических уравнений и упомянутой выше системы обыкновенных дифференциальных уравнений.  [c.326]


Физические условия при теплообмене конвекцией  [c.220]

В отличие от коэффициента теплопроводности л коэффициент теплоотдачи а не является физической постоянной, характерной для того или иного вещества. В общем случае он отражает совместное действие конвекции и излучения и потому зависит от очень многих факторов. Достаточно сказать, что одна только конвективная часть а определяется геометрической формой и размерами тела, физическими свойствами омывающей его среды, направлением и скоростью омывания, температурными условиями и другими деталями явления. Поэтому простота закона [формулу (1-14) иногда называют законом Ньютона] обманчива вся сложность вопроса о теплообмене между телом и окружающей средой сосредоточивается на методе определения величины а при конкретных условиях задачи. На первых порах эта сложность не могла быть в должной степени вскрыта, в связи с чем долгое время величину а неудачно понимали как коэффициент внешней теплопроводности по аналогии с X — коэффициентом внутренней теплопроводности . В действительности такой аналогии не существует.  [c.22]

Рассмотрим процессы теплообмена, протекающие в системе тел при условии, что среды вис — обе воздух, отличаются только значениями физических параметров. Тепловая энергия, выделяющаяся в теле 3, передается оболочке к излучением, конвекцией — омывающей тело з среде е, а также излучением через отверстия в оболочке — среде с. Энергия, полученная оболочкой, в свою очередь конвекцией передается среде в, а также конвекцией, излучением и кондукцией передается среде с. Тепловая энергия, воспринятая средой в при конвективном теплообмене с телом 3 и внутренней поверхностью оболочки, уносится из последней потоком среды в.  [c.120]

Следующие девять глав (гл. 6—14) посвящены вопросам теплообмена и трения в трубах при стационарном режиме в случае отсутствия в потоке внутренних источников тепла, диссипации энергии и и свободной конвекции. В этих главах рассмотрен теплообмен в круглых, плоских, кольцевых, призматических и цилиндрических трубах при граничных условиях на стенке первого, второго и третьего рода как в случае развитого течения, так и в гидродинамическом начальном участке. Наряду с теплообменом при постоянных физических свойствах значительное внимание уделено теплообмену и трению при переменных свойствах жидкости и газа (гл. 7 и 9 и отдельные параграфы в других главах). В частности, в гл. 9 рассмотрены теплообмен и трение в сверхкритической области параметров состояния вещества, а также при наличии в потоке газа высокой температуры равновесной диссоциации.  [c.4]


Теплообмен при кипении жидкости в большом объеме широко исследован с различных точек зрения. Интенсивно исследована теплопередача к кипящей жидкости, омывающей обогреваемую стенку канала. Однако более поздние исследования были посвящены весьма ограниченной области существования поверхностного кипения при наличии вынужденной конвекции или для потоков с очень небольшим паросодержанием [1—31. Поэтому из рассмотрения ранних статей следует, что расчетные соотношения основываются на некоторых физических соображениях, касающихся роста пузыря. Вообще эти соотношения получены на основании выражений, справедливых в условиях кипения жидкости в большом объеме. Проведенные недавно исследования для потоков с высоким паросодержанием показывают, что при высоком паросодержании влияние конвекции на теплообмен нельзя не принимать во внимание и что возможно даже подавление пузырькового кипения, на что указывал Денглер. Для этих условий было предложено несколько расчетных соотношений [4—7]. Эти соотношения основаны на гипотезе о том, что количество тепла, передаваемое конвекцией, превышает количество тепла, передаваемое любыми другими путями, когда паросодержание достигает вполне определенной величины. Конвективный теплообмен описывается уравнением, по виду напоминающим соотношение Нуссельта. Коэффициент теплоотдачи дается выражением  [c.253]

В рассматриваемом решении плотность конденсата считалась неизменной величиной. Расче 1ы, проведенные в предположении, что плотность является функцией температуры, а прочие физические параметры постоянны, показывают, что влияние свободной конвекции на течение и теплообмен жидких пленок при обычно встреч а ющи.хся на практике условиях незначительно. Влияние свободной конвекции усиливается по мере повышения давления и становится существенным в термодинамической околокритической области состояний.  [c.54]


Смотреть страницы где упоминается термин Физические условия при теплообмене конвекцией : [c.161]    [c.284]   
Смотреть главы в:

Основы термодинамики, газовой динамики и теплопередачи  -> Физические условия при теплообмене конвекцией



ПОИСК



Конвекция

Теплообмен, конвекция



© 2025 Mash-xxl.info Реклама на сайте