Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплопроводность древесины

Теплопроводность древесины невелика и зависит от влажности, плотности и направления волокон, с увеличением первых двух факторов теплопроводность возрастает. Вдоль волокон теплопроводность примерно в три раза выше, чем поперек волокон.  [c.232]

Тепловое старение резины 242 Теплоемкость древесины 232 Теплоизоляционная асбестовая бумага 267 Теплопроводность древесины 232 Теплостойкость пластмасс 152, 153, покрытий (см. термостойкость покрытий) 191, резины 242 Тербий 108  [c.346]


В результате низкой теплопроводности древесины приток тепла в рабочую зону сократился, а вместе с тем упало и рабочее давление с 200—180 до 150—140 атм. При этом прекратился износ плунжера из нержавеющей стали.  [c.312]

Физические свойства сосны плотность — от 490 до 750 кг/м пористость — от 46 до 85% электропроводность — от 10" до 10 Ом м (электропроводность сырой древесины уменьшается примерно в 10 раз) диэлектрическая проницаемость — от 19 до 33 пФ/м, теплопроводность — от 0,15 до 0,33 Вт/(м-К). Низкая теплопроводность древесины объясняется тем, что дерево имеет много пор, заполненных древесиной.  [c.243]

При сильном понижении температуры объем наружных слоев древесины значительно уменьшается, тогда как объем внутренних слоев мало изменяется вследствие малой теплопроводности древесины. Поэтому в наружных слоях возникают большие напряжения, которые разрывают Волокна. Весной трещина закрывается и обрастает годичным слоем древесины, причем этот слой у трещины получает местное расширение вследствие раздражения прилегающих к ней клеток.  [c.13]

Таблица 15.26 Коэффициенты теплопроводности древесины [3, 4] Таблица 15.26 <a href="/info/790">Коэффициенты теплопроводности</a> древесины [3, 4]
Приведены коэффициенты теплопроводности древесины в направлении, перпендикулярном к волокнам. Экспериментально установлено, что теплопроводность вдоль волокон в два-три раза выше теплопроводности перпендикулярно к волокнам. Значения X приведены для содержания воды в древесине 12% веса сухой древесины, что соответствует среднему влагосодержанию древесины в воздухе с влажностью 60% при комнатной температуре. Коэффициент теплопроводности сухой древесины X %0,0232+0,174 р, вт1(м-град), где р — плотность древесины, 1см .  [c.270]

Теплопроводность древесины зависит от объёмного веса и влажности древесины и неодинакова в разных направлениях, так, например, коэфициент теплопроводности при 2 С,вдоль волокон равен для сосны и пихты 0,0003, для дуба 0,00058, а поперёк волокон для сосны и пихты 0,01/01 кал см сек ° С.  [c.291]

Теплопроводность древесины невелика и зависит от влажности, плотности и направления волокон, с увеличением первых двух факторов теплопроводность возрастает. Вдоль волокон теплопроводность примерно в три раза выше, чем поперек волокон. Коэффициент теплопроводности сосны вдоль волокон 0,00030 кал см сек °С, В радиальном и тангенциальном 0,00010 кал см сек °С.  [c.339]


Теплопроводность древесины возрастает с увеличением плотности я влажности.  [c.82]

Вследствие незначительного коэффициента термического расширения древесины в деревянных конструкциях не требуется предусматривать температурные швы, обязательные в металлических, бетонных и других конструкциях. Благодаря малой теплопроводности древесины, обусловленной ее значительной пористостью, стены деревянных строений могут иметь небольшую толщину (примерно в 2—5 раз меньшую, чем кирпичные стены). Древесина хорошо поддается механической обработке деревянные детали легко соединяются гвоздями.  [c.133]

Теплопроводность древесины зависит от объемного веса и влажности древесины и неодинакова в разных направлениях,так, например, коэффициент теплопроводности при 20" С вдоль волокон равен для сосны и пихты 0,0003, для дуба 0,00058, а поперек волокон для сосны и пихты 0,0001 кал см X сек° С.  [c.334]

Удельная теплоемкость сухой древесины составляет для всех пород примерно 1,7-1,0 Дж/(кг К). Теплопроводность древесины невелика.  [c.796]

Теплоёмкость скоропортящихся продуктов 541 Теплопроводность древесины 679  [c.795]

Зависимость величины коэффициента теплопроводности от направления теплового потока наблюдается только у анизотропных материалов. Для иллюстрации этой зависимости в табл. 4 приводятся коэффициенты теплопроводности древесины в зависимости от направления теплового потока. Данные таблицы по-  [c.28]

Увеличением коэффициента теплопроводности древесины при потоке тепла вдоль волокон объясняется резкое понижение температуры в наружных углах деревянных бревенчатых или брусковых стен.  [c.29]

При выборе значений коэффициента теплопроводности древесины необходимо учитывать расположение дерева в конструкции и направление теплового потока, например, для деревянного дощатого пола коэффициент теплопроводности древесины будет меньше, чем для пола из торцовых шашек, так как в первом случае поток тепла имеет направление, перпендикулярное волокнам древесины, а во втором — параллельное им.  [c.29]

Устройством на наружной поверхности угла утепляющих пилястр (рис. 50, д) — обычно в деревянных домах. В брусчатых и рубленых домах эта мера имеет особенно большое значение при рубке стен в лапу, в этом случае пилястры защищают угол от излишней потери тепла по торцам бревен вследствие большей теплопроводности древесины вдоль волокон. Ширина пилястр, считая от наружной грани угла, должна быть не менее полуторной толщины стены. Пилястры должны иметь достаточное термическое сопротивление (ориентировочно не менее / = = 0,25 град-м --ч ккал, что соответствует деревянным пилястрам из А -мм досок). Дощатые пилястры на углах стен, рубленных в лапу, желательно ставить на слой утеплителя.  [c.170]

В настоящей главе приведены теплопроводности некоторых технических сталей и сплавов (табл. 15.7— 15.16), полупроводников (табл. 15.17), совершенных диэлектрических монокристаллов (табл. 15.18), стекол (табл. 15.19), огнеупорных материалов и высокотемпературных композиций ядерного топлива (табл. 15.20— 15.24), строительных и теплоизоляционных материалов, древесины, горных пород и прочих веществ (табл. 15.25— 15.29).  [c.339]

В качестве тепловой изоляции применяют материалы с низким значением теплопроводности и достаточно стабильными другими физическими характеристиками. Теплоизоляционные материалы изготовляют как из органического, так и неорганического сырья. К сырью органического происхождения относятся шерсть, хлопок, древесина и т. д., а неорганического — асбест, шлак, глина, песок и т, д.  [c.293]

Исследование червячных передач с колесами из древесно-слоистого пластика. В поисках заменителя оловянистых бронз некоторые заводы стали применять в качестве материала червячных колес древесно-слоистый пластик (ДСП). Достоинством этого материала, как указывается в литературе, по сравнению с другими пластическими массами являются высокая механическая прочность, низкий коэффициент трения, хорошая износостойкость, доступность основного материала (древесины) и сравнительно невысокая стоимость. Весьма низкая теплопроводность является недостатком пластика как материала для червячных колес, поскольку затрудняется отвод тепла из зоны зацепления в окружающее пространство.  [c.64]

Тепловые свойства древесины определяются её теплоёмкостью, теплопроводностью и тепловым расширением.  [c.281]


Отсюда следует, во-первых, что q можно трактовать (см. рис. 1-1) как тепловую нагрузку элемента поверхности, повернутого на произвольный угол ср относительно изотермы, и, во-вторых, что эта нагрузка пропорциональна производной от температуры по нормали к данному элементу. Очевидно, наибольшая тепловая нагрузка имеет место для элемента, лежащего на изотермической поверхности. Здесь, как и в дальнейшем, не затрагиваются усложненные анизотропией случаи теплопроводности. Для таких веществ, как древесина, слюда и т. п., коэффициент теплопроводности зависит от направления, берущего начало из данной точки, и поэтому простое правило косинусов для получения составляющей несправедливо.  [c.13]

Классификация термоизоляций и используемых в них термоизоляторов может быть построена по различным принципам [1-3]. Среди монолитных термоизоляторов обычно выделяют [3] твердые органические вещества (из которых наименее и наиболее теплопроводными являются технический каучук и волокна древесины, причем их теплопроводности различаются в 3-4 раза) природные каменные материалы (кварц более чем в 10 раз превосходит по теплопроводности мел) кристаллические неметаллические вещества (у алмаза теплопроводность в 500 раз выше, чем у хлората натрия).  [c.7]

Древесно-слоистые пластики отличаются от исходной древесины и фанеры большей плотностью (1250...1330 кг/м ) и высокими механическими свойствами предел прочности при растяжении вдоль волокон рубашки 140...260 МПа, при изгибе — 150...280 МПа удельная ударная вязкость — 3...8 МПа имеют высокое сопротивление истиранию. ДСП обладают высокой теплостойкостью и низкой теплопроводностью — 0,16...0,28 Вт/(м К) водопоглощение за 24 ч — 5...10%. Эти пластики немагнитные, стойки к действию масел, растворителей, моющих средств, но чувствительны к влаге.  [c.368]

Достоинствами древесины являются относительно высокая прочность малая объемная масса и, следовательно, высокая удельная прочность хорошее сопротивление ударным и вибрационным нагрузкам малая теплопроводность и, следовательно, хорошие теплоизоляционные  [c.249]

Для древесины малые различия между величинами коэффициента теплопроводности а, измеренными для тангенциального и радиального направлений, позволяют утверждать, что и для всех направлений поперек волокон эти различия практически отсутствуют, так как направления главных осей симметрии совпадают для тензора второго ранга с направлениями, для которых величины компонентов тензора являются экстремальными.  [c.237]

С другой стороны, для таких веществ, как древесина, коэффициенты теплопроводности которой К2 и Кз в направлениях л О, г системы цилиндрических координат [70] (т. е. в направлении по лучам, кольцам и по оси дерева) неодинаковы, тепловые потоки в указанных направлениях соответственно равны  [c.46]

Рис. 18. Теплопроводность прессованной древесины вдоль волокон в зависимости от объемного веса, температуры и пропитки смазочными маслами Рис. 18. Теплопроводность прессованной древесины вдоль волокон в зависимости от объемного веса, температуры и пропитки смазочными маслами
Древесина обладает значительной прочностью, легко обрабатывается инструментом, имеет малый коэффициент звуко-, электро-и теплопроводности и небольшую объемную массу. Однако натуральная древесина легко загорается, подвержена гниению, изменению объема и короблению при изменении влажности, она обладает различной механической прочностью вдоль и поперек волокон и пр.  [c.682]

Объемный вес древесины хвойных пород ири воздушно-сухом состоянии 500—610 кз/ж , коэффициент теплопроводности при потоке тепла параллельно волокнам 0,38—0,45, а при перпендикулярном — 0,14 — —0,15 ккал/м час град при температуре 20° С.  [c.120]

Т еплоем кость абсолютно сухой древесины в зависимости от температуры t определяют по формуле С = 0,374 + 0,00066 t ккал1кг-град при влажности 20% С =0,5 0,6. Древесина обладает слабой теплопроводностью, которая возрастает при увлажнении и повышении температуры. Теплопроводность древесины вдоль волокон выше, чем поперек, приблизительно в 2,5 раза. При влажности 12—14% теплопроводность поперек волокон для хвойных пород равна 0,09— 0,14, для дуба 0,15 ккал1м-ч°С.  [c.293]

Теплопроводность древесины невелика и зависит от объемного веса, влажности и напра15ления теплового потока по отношению к волокнам. Она находится в прямой зависимости от объемного веса. Коэффициент теплопроводности  [c.22]

Тепло1троаод1юсти дрепесины приведены в направлении, перпендикулярном волокнам. Теплопроводность вдоль волокон в 2—3 рлза выше теплопроводности поперек волокон. Влажность материалов 7 — 10%. Теплопроводность сухом древесины, Вт/(м-К), можно оценить по формуле X 0,0232 -)- 0,174 у, где 7 — плотность дренесины, г/см .  [c.360]

Натуральная древесина, несмотря на развитие синтетических материалов и пластмасс, является в зонах благоприятного использования ценным непревзойденным конструкционным материалом по высокой прочности и декоративности, сочетающимся с небольшой плотностью, теплоемкостью, теплопроводностью, электропроводностью. Она хорошо сопротивляется воздействию газов и других агрессивных сред и ртличается хорошей обрабатываемостью и невысокой стоимостью. К недостаткам древесины относятся большая анизотропность механических свойств и большая их изменчивость в зависимости от влажности.  [c.231]

Древесноволокнистые плиты (ГОСТ 4598—60) изготовляют из древесного волокна (размельченной древесины) с добавками свя-зуюш,их составов. Подразделяют на сверхтвердые (плотность 950 кг/ж и прочность на изгиб 500 кПсм ), твердые (850 и 400), полутвердые (400 и 150), изоляционно-отделочные (300 и 20) и изоляционные (250 и 12), предназначенные для работ в конструкциях, защищенных от увлажнения. Для плит двух последних видов нормируется коэффициент теплопроводности — соответственно 0,08 и 0,06 ккал1м° С. ч.  [c.238]

Пластические массы типа текстолит, пластифицированная древесина типа лигнофоль идут на изготовление шестерён привода от электродвигателей. Из пластмасс также изготовляются ручки, кнопки и тому подобные детали, к которым предъявляются требования коррозийной устойчивости и малой теплопроводности. Прокладки, кольца и другие уплотнители изготовляются из маслосюй-кой резины.  [c.23]


Подсчитанные по формуле (11) длительности периодов удаления влаги под влиянием избыточного давления пара и этапов этих периодов дали вполне удовлетворительные результаты (рис. 7), что оправдывает упрощения, внесенные в расчетную схему. Коэффициенты теплопроводности можно выбирать по данным К. Р. Кантера (Л. 1], принимая в качестве расчетных среднее влагосодержание древесины  [c.195]

Текстолит, ДСП (древесно-слоистый пластик) и прессованную древесину используют в подшипниках для тяжелого машиностроения. Полимерные самосмазывающиеся материалы на основе полиамидов, полиацетилена, политетрафторэтилена и различных смол используют для подшипников, ра ающих в температурном диапазоне 200... + 280°С при значительных скоростях скольжения. Фторопласты (полимеры и сополимеры галогенопроизводных, этилена и пропилена) обладают хорошими антифрикционными свойствами, химической инертностью, но высоким коэффициентом линейного расширения и низким коэффициентом теплопроводности. Подшипники с резиновыми вкладышами хорошо работают с водяной смазкой.  [c.464]

Различают Ф. необрезную и обрезную, подвергнутую после склеивания обрезке и сортировке. По виду отделки Ф. выпускается шлифованная или циклеванная и тисненая, а по форме плоская и фасонная. Физико-механич. св-ва Ф. характеризуются влажностью, влагоемкостью, объемным весом, теплоемкостью, теплопроводностью, звукопроводностью и др. Влажность Ф., склеенной смоляными клеями и бакелитовой пленкой, должна быть не выше 12%, а склеенной белковыми клеями сухим горячим способом — не выше 15%. Вла-гоемкость Ф. зависит от влажности и темп-ры воздуха и неск. ниже влагоемко-сти древесины. Объемный вес клееной Ф. зависит от породы древесины, режимов склеивания, рода клея, толщины и числа слоев.  [c.392]

Теплоемкость Ф. близка к теплоемкости массивной древесины. Коэфф. тенлопро-водности Ф, несколько меньше коэфф. теплопроводности массивной древесины и его можно принять равным для клеено] Ф. 0,095 ккал/м -час-°С.  [c.392]

Принцип лазерной резки заключается в том, что остросфокусирован-ный лазерный луч иащавляют на поверхность материала. Под его воздействием металл быстро расплавляется. Пары и жидкий металл удаляются из зоны резания потоком инертного газа, кислорода или воздуха. Применение кислорода позволяет значительно повысить скорость и качество резки За счет получения дополнительного тепла в ходе экзотермической реакции кислорода с материалом. Пригодность материалов к лазерной резке зависит от степени поглощения ими лазерного излучения, а также их теплопроводности. Хорошо поддаются лазерной резке неметаллы — керамика, кожа, ткань, древесина ИТ, п. практически не поддаются ей материалы с высоким коэффициентом отражения и высокой теплопроводностью — медь, латунь, золото, серебро и т. п.  [c.287]

Органосиликатные композиции ОС-12-01 и ОС-12-03 поставляются заводом-изготовителем в комплекте с от-вердителем — полибутилтитанатом. Покрытия, образованные этими композициями, переводят древесину в категорию трудновоспламеняемегх материалов (при толщине не менее 250 мкм), обладают малой водопроницаемостью и теплопроводностью, значительной термо- и морозостойкостью. Они выдерживают резкие перепады температур (от —60 до +600 °С), их можно наносить при нормальных и пониженных (до —20 X) температурах. Недостатком покрытий является невысокая механическая прочность.  [c.119]


Смотреть страницы где упоминается термин Теплопроводность древесины : [c.482]    [c.180]    [c.29]    [c.16]   
Машиностроительные материалы Краткий справочник Изд.2 (1969) -- [ c.232 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.6 , c.334 ]

Технический справочник железнодорожника Том 2 (1951) -- [ c.6 , c.334 , c.679 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте