Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фурье-преобразования и дифракция примеры

Фурье-преобразования и дифракция примеры  [c.46]

Чтобы ближе познакомить читателя с использованием обычных фурье-преобразований и показать, как они используются при рассмотрении кинематической дифракции, приведем ряд примеров, в-которых используются обе рассмотренные функции. При рассмотрении дифракции в большинстве случаев будем исходить из простых одно- или двумерных объектов.  [c.46]

Чтобы обеспечить аналогию между этим новым сценарием и дифракцией, на рис. 4.7, а представлены прямоугольная функция и преобразование от нее, обозначенные теперь в соответствии с новой переменной. Однако, как мы уже знаем, основная компонента прямоугольной функции не периодическая (т.е. нулевой частоты) с постоянной амплитудой, вследствие чего функция полностью положительна. Более подходящим примером для рассмотрения световых волн является пара преобразований на рис. 4,7,6. Здесь показана чистая синусоидальная волна с частотой Vi, представленная в виде цуга конечной продолжительности и длины. Она имеет амплитудно-частотное распределение, размытое около V] так, что суммирование дает группу волн (или волновой пакет), которая представляет собой профиль в пределах цуга, но суммарная амплитуда равна нулю с любой стороны от него. Если цуг длинный, то частотное размытие невелико и наоборот, т. е. взаимосвязь здесь такая же, как в случае с парой пространственного преобразования Фурье. Строго говоря, монохроматический свет предполагает наличие цугов бесконечной длины, но это условие физически не выполнимо, поскольку свет излучается атомами дискретно, в виде фотонов в результате все спектральные линии имеют конечную ширину. Если на рис, 4.7, б ширина частотного распределения взята в основном в пределах Vi + 5v, то мы имеем  [c.77]


Изящные примеры использования оптических преобразований были обнаружены в рентгеновской кристаллографии, где, как отмечено в гл. 2, формирование изображений атомов не может быть выполнено непосредственно, потому что отсутствуют линзы, которые могут быть использованы для сведения дифрагированных рентгеновских лучей. Отметим, что если зарегистрированы только интенсивности, то фурье-сум-мирование не может быть выполнено ни аналитически, ни экспериментально из-за отсутствия данных о фазах. В годы формирования указанного направления исследований У. Л. Брэгг сыграл ключевую роль в разработке методов оптического фурье-анализа для рассмотрения и решения этой и других проблем рентгеновской кристаллографии. Несмотря на то что развитие ЭВМ привело к машинным методам решения фазовой проблемы , работа Брэгга явилась важным вкладом в широкую область оптической обработки. В качестве основной литературы по развитию и применениям оптических методов к дифракции рентгеновских лучей, читатель может обратиться к работам, упомянутым в начале этого раздела.  [c.99]

Детально разработанная фурье-оптика дифрагирующих световых пучков базируется на простых и наглядных идеях, сформулированных, по существу, еще в прошлом веке. Теория дифракции Фраунгофера основывается на интегральном соотношении, показывающем, что угловой спектр поля, регистрируемый в дальнем поле или в фокальной плоскости линзы, определяется преобразованием Фурье от распределения комплексной амплитуды поля на входной апертуре. Многие практические успехи фурье-оптики основаны на продемонстрированных Аббе возможностях влиять на изображение, изменяя амплитуды и фазы спектральных компонент в фокальной плоскости. Классические примеры этой техники — метод темного поля и метод фазового контраста.  [c.33]

Примеры применения преобразований Фурье к расчету явлений дифракции.  [c.45]

Преобразование Фурье и его различные приложения к операциям свертки, корреляции и распределениям в настоящее время уже вошли в арсенал теоретической оптики и стали ее неотъемлемым инструментом. Это видно на примерах теории образования изображения, интерферометрии, спектроскопии и, наконец, голографии. Даже элементарное рассмотрение теории преобразования Фурье, приведенное ниже, дает исследователям универсальное средство для анализа различных задач физической оптики, теории дифракции и интерферометрии. А во многих случаях использование только таких теорем, как теоремы смещения или теоремы свертки, которые будут даны в следующих разделах, позволяет быстро находить решения целого ряда задач, которые в прошлом требовали применения специально разработанных и часто весьма громоздких методов.  [c.194]



Смотреть главы в:

Физика дифракции  -> Фурье-преобразования и дифракция примеры



ПОИСК



Дифракция

Преобразование Фурье

Примеры применения преобразований Фурье к расчету явлений дифракции. Изучение возникновения духов в спектрах решеток

Фурье (БПФ)

Фурье-преобразование примеры



© 2025 Mash-xxl.info Реклама на сайте