Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые экспериментальные парадоксы

НЕКОТОРЫЕ ЭКСПЕРИМЕНТАЛЬНЫЕ ПАРАДОКСЫ  [c.58]

Величина AS, определяемая при учете ошибок опознающего устройства, зависит не только от степени различия атомов, но и от природы самого устройства. Таким образом, экспериментальное обнаружение парадокса Гиббса связано с некоторой трудностью, так как он проявляется при работе с предельно точным определяющим устройством (подобно тому, как экспериментальное обнаружение неограниченно долгого прямолинейного и равномерного движения тела связано с затруднением полного устранения влияния на это движение других тел) .  [c.319]


В 80—90-е годы появились работы Жуковского о движении тела в жидкости — проблема, которой до него занимались Пуассон, Стокс, Клебш, Томсон и Тэт, Кирхгоф и др. В работе О парадоксе Дюбуа (1891) Жуковский дал физическое объяснение зтому парадоксу. С точки зрения общих законов механики безразлично, движется ли тело в неподвижной жидкости, или тело неподвижно, а движется жидкость. Тем не менее Р, Дюбуа (1818— 1896) в 1879 г. экспериментально показал, что силы, действующие на тело в том и другом случаях, различны. Оказалось, что сопротивление неподвижной пластинки в жидкости, движущейся с некоторой скоростью, будет больше сопротивления, испытываемого пластинкой, движущейся с той же скоростью в неподвижной жидкости. Это расхождение Жуковский объяснил тем, что при движении реальной жидкости всегда возникают завихрения у стенок, на свободной поверхности и т. д. В подтверждение своего объяснения Жуковский сконструировал прибор, с помощью которого показал, что при отсутствии завихрений в жидкости давления в обоих случаях будут одинаковы. Заметим, что проблему движения твердого тела в жидкости в те же годы и позднее изучал также  [c.268]

В [54] отмечается, что соотношения деформационной теории лучше всего подходят именно к решению задач устойчивости, так как при этом задача формулируется относительно скоростей, а соотношения деформационной теории, записанные относительно скоростей, можно отождествить с соотношениями некоторой теории течения с угловой точкой на поверхности текучести [24, 25, 84]. В [61] соотношения этой теории течения представлены в явном виде. Исходя из этих соображений предполагается [24, 84], что парадокс можно разрешить с помощью использования теории течения с угловой точкой на поверхности текучести. К этому объяснению парадокса пластического выпучивания близко примыкает идея работы [109]. Здесь на основе экспериментальных данных установлено, что уже при наличии малых пластических деформаций на поверхности текучести образуются участки с большой кривизной, а сама поверхность текучести сильно трансформируется. Сделано предположение, что теория течения, построенная с использованием только второго инварианта девиаторов напряжений, недостаточна для описания процесса выпучивания и надо использовать более сложную теорию, которая учитывала бы эти экспериментсшьные факты.  [c.10]

Описанный подход к распространению гармонических волн расширения в бесконечном цилиндрическом стержне с помощью точных уравнений приводит к выводу, что энергия не может переноситься вдоль цилиндра этим типом волн со скоростью, превышающей Сд. Некоторые исследователи — Филд [33], Саусвелл [132], Прескотт [114] и Купер [22] — указывают, однако, что теоретически допустимо рассматривать цилиндр таким же методом как безграничную среду. Тогда надо было бы ожидать, что упругие волны будут распространяться только с двумя скоростями, возможными для бесконечной среды (с и с.з), причем эти волны непрерывно отражаются от свободной поверхности цилиндра таким образом, как это описано в предыдущей главе. Тогда, если мы рассмотрим возмущение в некоторой точке внутри цилиндра, то обнаружим, что из этой точки должна распространяться сферическая волна расширения со скоростью с , часть этой волны должна распространяться вдоль цилиндра, не испытывая отражений от поверхности. Амплитуда этой неотра-зившейся волны должна убывать обратно пропорционально расстоянию, вследствие чего действие ее быстро затухает, но, тем не менее, часть энергии переносится со скоростью волн расширения в среде. Части волны, падающие на цилиндрическую поверхность, приводят к появлению отраженных волн расширения и искажения, которые, в свою очередь, при повторном отражении порождают волны обоих типов. Естественно ожидать, что наибольшая часть энергии возмущения будет распространяться со скоростью, меньшей скорости волн расширения. Но теория Похгаммера утверждает, что никакая часть энергии не может переноситься со скоростью, большей Со, и этот парадокс надо разрешить на основании экспериментальных наблюдений.  [c.65]


Обсудим теперь вопрос о том, можно ли использовать квантовые корреляции для передачи информации. На наличие нелокальных корреляционных связей в квантовой механике впервые было указано в работе Эйнштейна, Подольского, Розена [8]. Такая корреляция выглядела как своего рода парадокс, а в более поздних работах она была установлена со всей определенностью. Большую роль при этом сыграла теорема Белла [29], согласно которой наличие скрытых параметров перед квантовыми измерениями должно было бы проявляться в виде некоторых неравенств, не наблюдающихся экспериментально [31,90,91]. Тем самым была подтверждена ортодоксальная квантовая механика. Вместе с тем это означает, что в момент квантового измерения возникают нелокальные корреляционные связи. В эксперименте Аспекта, Далибарда, Роджера [31] было четко показано, что эти связи устанавливаются сверхсветовым образом. Тем самым, естественно, ставится вопрос о том, нельзя ли использовать квантовые корреляции для сверхсветового обмена информацией  [c.270]


Смотреть страницы где упоминается термин Некоторые экспериментальные парадоксы : [c.98]    [c.244]   
Смотреть главы в:

Вязкие течения с парадоксальными свойствами  -> Некоторые экспериментальные парадоксы



ПОИСК



Парадокс



© 2025 Mash-xxl.info Реклама на сайте