Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловой и аэродинамический расчеты котла

В табл. 3-1 приведены основные данные теплового и аэродинамического расчета котла [Л. 3-1, 3-2].  [c.56]

Некоторые данные теплового и аэродинамического расчетов котла ТП-90  [c.57]

Выборочные данные из теплового и аэродинамического расчетов котла ДКВ-6,5-13-350, необходимые для определения основных характеристик модели, даны в разделе А табл. 5-1. В разделе Б этой таблицы приведены значения некоторых физических свойств и критерия Рейнольдса для потока дымовых газов в первом котельном пучке, пароперегревателе и втором котельном пучке.  [c.157]


ТЕПЛОВОЙ И АЭРОДИНАМИЧЕСКИЙ РАСЧЕТЫ КОТЛА  [c.64]

Методика теплового и аэродинамического расчета котла приведена в соответствие с действующими нормативными методами. Методика расчета тепловых схем котельных изложена в соответствии с расчетами, выполняемыми проектными институтами при проектировании производственных и отопительных котельных.  [c.3]

Конструкторский расчет КУ выполняют для базового режима работы при определенной температуре воздуха. При изменении параметров газов перед КУ необходимо совместное выполнение теплового, гидравлического и аэродинамического расчетов котла. Как правило, КУ работают в нерасчетных режимах из-за изменения параметров потоков теплоносителей, связывающих котел с газотурбинной, паротурбинной и теплофикационной установками. В зависимости от поставленной задачи и условий работы для ПГУ-ТЭЦ базовым может быть один из следующих режимов максимальный зимний режим  [c.403]

Излагается физическая сущность процессов, протекающих при работе основного и вспомогательного оборудования котельных установок. Рассмотрены мероприятия, повышающие надежность и экономичность работы котельных агрегатов. Приведены современные конструкции топочных устройств, промышленных паровых водогрейных и комбинированных пароводогрейных котлоагрегатов. Даны тепловые и аэродинамические расчеты. Первое издание вышло в 1980 г. Второе издание дополнено главой Технико-экономические показатели и компоновка оборудования , рассмотрены котлы специального назначения, котлы для утилизации тепла уходящих газов.  [c.2]

Основное внимание уделено рассмотрению физической сущности процессов, протекающих при работе основного и вспомогательного оборудования котельных установок. Рассмотрены современные конструкции промышленных парогенераторов и водогрейных котлов. Освещены вопросы теплового и аэродинамического расчета на базе нормативных методов. Первое издание вышло в 1980 г. Второе издание переработано и дополнено. Включена глава Технико-экономические показатели и компоновка оборудования , рассмотрены котлы специального назначения для утилизации тепла уходящих газов.  [c.288]

Повышение эффективности работы парогенераторов и водогрейных котлов возможно только при глубоком усвоении физических процессов и практики расчета и конструирования современных установок. В связи с этим основное внимание в учебнике уделено рассмотрению физической сущности процессов, протекающих при работе основного и вспомогательного оборудования котельных установок. Рассмотрены современные конструкции промышленных парогенераторов и водогрейных котлов. Освещены вопросы теплового и аэродинамического расчета на базе нормативных методов. Приводится пример расчета и даются рекомендации для выполнения курсового проекта.  [c.2]


Приведены сведения по топливам, тепловому балансу котла. Даны конструкции котлов, вспомогательного оборудования, топочных устройств. Рассмотрены основы организации топочных процессов, теплового, прочностного, аэродинамического и гидравлического расчетов котлов, принципы конструирования элементов котла.  [c.2]

В 1936 г. в ЦКТИ и ВТИ были завершены экспериментальные исследования теплоотдачи и сопротивления пучков ПЗБ при поперечном смывании их газами. ЦКТИ, кроме того, опубликовал работу по тепловому, гидродинамическому и аэродинамическому расчетам паровых котлов. Во ВТИ предложено ступенчатое испарение воды в барабанных паровых котлах.  [c.42]

Кроме получения глобального экстремума, этот метод позволил представить полную картину распределения расчетных затрат во всей области изменения оптимизируемых переменных. По вышеизложенной методике была разработана специальная программа, в которую вошли подпрограммы теплового, гидравлического, аэродинамического расчета и расчет суммарных затрат, а также подпрограмма поиска экстремума. Следует отметить, что результаты теплового расчета, т, е. расход топлива, скорости сред, непосредственно использовались в расчете функционала. Оптимизация водогрейных котлов проведена при различных режимах работы основного и пикового, при различных нагрузках, климатических условиях и ценах на жидкое топливо (от 10 до 20 руб/т).  [c.61]

Тепловые и аэродинамические расчетные характеристики котлов при работе с номинальной нагрузкой приведены в табл. 1-5. Эти расчеты относятся К котлам, выполненным заводом по конкретным заказам, и в некоторой мере отражают их индивидуальные особенности.  [c.12]

В настоящем разделе рассмотрена только часть оборудования, входящего в котельную установку, конструкции котлов, технологические схемы организации сжигания топлива, методы получения чистого пара, а также основные положения теплового, гидродинамического, аэродинамического и прочностного расчетов котлов. Часть вопросов, касающихся других видов оборудования КУ, рассмотрена в разд. 5, 6, 7 (дутьевые вентиляторы и дымососы, компоновка ТЭС, шлако- и золоудаление, подготовка воды п водный режим котлов) и в книге 4, разд. 9 (очистка поверхностей нагрева, золоулавливание, очистка сточных вод).  [c.11]

Выбор тягодутьевых машин производится по расходу продуктов сгорания и воздуха, а также сопротивлению газового и воздушного тракта. Дымосос и вентилятор должны иметь производительность, при которой обеспечивается удаление образовавшихся продуктов сгорания и подача воздуха, необходимого для горения при номинальной мощности парогенератора или водогрейного котла. Расход продуктов сгорания и воздуха, необходимого для горения, определяется из теплового расчета парогенератора и водогрейного котла, а сопротивление газового и воздушного тракта — из аэродинамического расчета установки. Учитывая колебания барометрического давления, изменение качества топлива, загрязнения поверхностей нагрева в процессе эксплуатации, технические допуски на отклонения заводских напорных характеристик, при выборе машин их производительность и напор выбирают с запасом. Коэффициенты запаса, рекомендуемые СНиП П-35-76, приведены в табл. 12-2.  [c.338]

Экономичность работы тепловых установок в большой степени зависит от правильного расчета пропускной способности паропроводов и конденсато- и воздухоотводящих сетей. Поэтому наряду с тепловым расчетом важное значение имеет также гидравлический (аэродинамический) расчет тепловых устройств, который позволяет определить величину потерь давления в сети и уточнить требуемые параметры теплоносителя при выборе парового котла или другого генерирующего устройства, обеспечивающего возможность осуществления рассматриваемого технологического процесса.  [c.407]

Таким образом, зная из теплового расчета установок расход и давление пара на технологические нужды, определив площади поперечного сечения всех подводящих и отводящих каналов и исходя из условий создания в них рациональных скоростей теплоносителей, рекомендуемых на основании опытных данных соответствующими справочными руководствами [15], по приведенной методике аэродинамического расчета подсчитывают потери давлений от линейных местных сопротивлений в этих каналах. Это позволяет уточнить параметры теплоносителя и выбрать требуемый тип паровых котлов.  [c.409]


Во время режимной наладки котельной установки в соответствии с установленными правилами измеряют расход, скорость, давление, температуру и состав продуктов горения сжигаемого топлива, а также другие величины, характеризующие протекание физических процессов в котельной установке. В результате испытаний и обработки опытных данных должны быть получены показатели котельной установки, характеризующие экономичность сжигания топлива, интенсивность работы топки и поверхностей нагрева, аэродинамическое сопротивление газового тракта. При обработке результатов испытаний выполняют ряд теплотехнических расчетов, характеризующих топливо и продукты сгорания, определяют коэффициент избытка воздуха и подсос воздуха в газоходы котла, составляют тепловой баланс котла с определением тепловых потерь и КПД. Эксплуатационные и наладочные испытания обычно проводят по П классу точности с определением КПД котельной установки с точностью до 2 %.  [c.313]

Еще одной особенностью ПГУ с КУ является необходимость параллельно с тепловым выполнять гидравлический и аэродинамический расчеты КУ Первый из них позволяет находить давления пара и воды в элементах котла, а второй — определить аэродинамическое сопротивление элементов и всего газового тракта КУ, которое оказывает влияние на параметры газов за ГТ и особенно на электрическую нагрузку ГТУ. На примере КУ ПГУ-450 с ГТУ типа V94.2 (Siemens) в табл. 8.8 показаны изменение этого сопротивления и его влияние на характеристики установки (расчеты ВТИ).  [c.300]

В СВЯЗИ С обсуледаемым вопросом нужно подчеркнуть, что экспериментальное определение С, производится в условиях, когда на пакет труб натекает однородный воздушный поток с естественной для аэродинамических труб турбулентностью в начале их рабочего участка. Действительные условия натекания могут оказаться иными. Интересным примером служат данные, полученные Пучковым (ВВМИУ им. Дзержинского) на модели корабельного котла. В топочном объеме этого котла организовано очень дющное завихрение протекающих газов. Конвективный пакет труб играет, соответственно, роль успокоительной решетки, погашающей вихри и измельчающей турбулентность натекающего потока. Неудивительно, что при таком положении интенсивность теплоотдачи оказалась, как показал опыт, убывающей от первого и до третьего поперечного ряда. Более глубоко расположенные ряды участвовали в теплопередаче уже обычным образом, поскольку предшествующие три ряда лишали поток первоначальной индивидуальности и оставался в действии механизм искусственного развития турбулентности, свойственный всяким многорядным пакетам труб. Приведенный пример указывает на то, что турбулентная структура натекающего на пакет потока способна существенно повлиять на интенсивность теплоотдачи, однако только при малом числе рядов в многорядных же пучках средняя величина а может всегда практически рассчитываться по данным норм. Поправки делаются только на неполноту омывания труб потоком. Под этим подразумевается неравномерность скоростей газов на разных участках поверхности нагрева, переменный угол атаки и т. п. Эти поправки, а также поправки на загрязнение труб, приводятся Б методе теплового расчета котельных агрегатов.  [c.131]


Смотреть страницы где упоминается термин Тепловой и аэродинамический расчеты котла : [c.307]    [c.230]   
Смотреть главы в:

Тепловое и атомные электростанции изд.3  -> Тепловой и аэродинамический расчеты котла



ПОИСК



Аэродинамический расчет котла

Аэродинамический шум

Котел

Расчет аэродинамический

Расчет тепловой



© 2025 Mash-xxl.info Реклама на сайте