Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Олово - торий

Золото, серебро, платина, медь, олово, никель,кобальт Тантал, ниобий, титан, торий, церий.ва надий, уран  [c.529]

Золото, серебро, платина, олово, никель, кобальт Тантал, ниобий, титан, торий, церий, ванадий, уран  [c.369]

Сера S (г). ... Сера Sj (г). . . . Сурьма Sb (т). . Селен Se (т). . . Селен Se (г). . . Селен Se2 (г). . . Кремний Si (т). . Олово Sn (т), белое Олово Sn (т), серое Стронций Sr (т) Теллур Те (т). Торий Th (т). . Титан Ti (т). . Таллий Т1 = а (т) Уран и = а (т). Ванадий V (т). Вольфрам W (т) Цинк Zn (т). . Цирконий Zr (т)  [c.191]


Вольфрам хорошо растворим в алюминии, титане, ванадии, цирконии, платине, осмии, родии и рутении, но почти не растворяется в ртути. Имеют-сй сообщения о соединениях вольфрама с бериллием и теллуром. Вольфрам слабо растворим в тории и уране. Он не образует сплавов с кальцием, медью, магнием, марганцем, свинцом, цинком, серебром и оловом.  [c.152]

Не все оксиды при высоких температурах химически устойчивы. В восстановительной среде при высокой температуре оксиды церия, хрома, никеля, олова, титана и цинка легко восстанавливаются и превращаются в металлы или низшие оксиды, имеющие невысокие температуры плавления. Тугоплавкие оксиды ниобия, марганца, ванадия неустойчивы при нагреве в окислительной среде. Они превращаются в оксиды более высокой валентности, имеющие более низкую температуру плавления. При нагреве оксида хрома до 2273 К начинается его активное испарение. Оксиды бериллия, магния, циркония и тория устойчивы при высоких температурах (табл. 3.24).  [c.207]

Элементы третьей группы мало влияют на полиморфное превращение. Эти элементы называют нейтральными упрочнителями (олово, цирконий, германий, гафний и торий).  [c.195]

Состав 6 рекомендуется для травления инконеля и двойных сплавов циркония с торием, оловом и ниобием, а состав 7 — для сплавов циркония с алюминием или ураном [30],  [c.21]

Из ряда работ следует вывод о снижении стойкости алюминия, содержащего церий, платину, серебро, торий и ванадий. Присутствие хрома, олова, кадмия и молибдена в зависимости от их содержания и природы коррозионной среды может быть как благоприятным, так и отрицательным. Висмут в одних случаях приводит к повышению стойкости, в других — ои, как и бор, нейтрален. Сурьма в общем обладает защитным действием.  [c.509]

Селен Бег (г). Кремний 81 (т) Олово 8п (т), белое Олово 8п (т), серое Стронций 8г (т) Теллур Те (т). Торий ТН (т). . Титан Т1 (т). . Таллий Т1 = а (т) Уран и = а (т). Ванадий V (т). Вольфрам АУ (т) Цинк 2п (т). . Цирконий 2г (т)  [c.191]

До настоящего времени в простом сосуде удавалось глянцевать или полировать следующие металлы алюминий и его сплавы, сурьму, серебро, висмут, кадмий, хром, кобальт, медь ч ее сплавы, олово, железо, нормальные и специальные стали, германий, бериллий, индий, магний, марганец, молибден, никель и его сплавы, ниобий, золото, свинец, тантал, торий, титан, вольфрам, уран, цинк и цирконий.  [c.251]

После проведения указанной предварительной обработки на торий могут быть осаждены следующие металлы алюминий, хром, медь, железо, никель, золото, индий, серебро, цинк, свинец и олово. Следует избегать электролитов, содержащих хлориды с рН<4. При хлорировании температура раствора не должна значительно превышать 55°С. Можно считать, что электролиты, указанные для бериллия, пригодны также и для покрытия тория.  [c.399]


Рассматривая условия раз-серная кислота рушения белой жести, из ко-торой изготовлены консервные банки, нужно учесть, что в большинстве консервируемых продуктов олово имеет более отрицательный потенциал, нежели железо, т. е. олово электрохимически защищает железо от растворения.  [c.96]

Наибольшим сродством к кислороду отличаются иттрий, торий, гафний, уран, скандий, щелочно- и редкоземельные элементы, титан, цирконий, алюминий, литий. При литье черных, цветных и тугоплавких металлов они действуют как раскислители (восстановители), а на воздухе в состоянии тонкой дисперсности обладают пирофорными свойствами. К металлам с несколько меньшим, но все же значительным сродством к кислороду относятся ванадий, тантал, ниобий, молибден, вольфрам, хром, марганец, цинк, натрий, железо. Слабым сродством к кислороду характеризуются медь, никель, кобальт, свинец, олово, кадмий, висмут, сурьма.  [c.192]

Под руководством акад. В. И. Вернадского в 1909—1915 гг. были проведены важные исследования по изучению распространенности в недрах нашей страны рассеянных редких металлов —индия, таллия, рубидия и цезия, что было ценным вкладом в геохимию этих элементов. В 1916 г. В. И. Вернадский указывал, что в России имеется сырье для получения ванадия, лития, лантана, церия, тория, бора, висмута, кадмия, молибдена, титана, олова, радия, селена, урана, цезия и циркония. Но ни один из этих металлов не добывался в России.  [c.23]

Весовое содержание ниобия в земной коре Ы0 % (вес.), тантала 2-10 % (вес.). В природе ниобий и тантал встречаются почти всегда совместно. Они входят в состав большого числа (около 100) разнообразных минералов, представляющих собой большей частью весьма сложные комплексные соли ниобиевой и танталовой кислот. В состав минералов входят в различных сочетаниях железо, марганец, щелочные и щелочноземельные металлы, а также ряд редких элементов редкоземельные элементы, титан, цирконий, торий, уран, олово, сурьма, висмут, вольфрам и некоторые другие.  [c.146]

Третья группа представлена легирующими элементами, мало влияющими на устойчивость а- и р-фаз. К числу таких элементов можно отнести олово, цирконий, германий, а также, по-видимому, гафний и торий. Эти элементы называют нейтральными упрочнителями.  [c.58]

Остаточный сравнительно кислый расплав, богатый силикатами, затвердевает, образуя сначала полевые шпаты и кварц, а затем пегматиты, несущие литий, бериллий, торий, ниобий, тантал. Из газов и паров возникают месторождения олова, вольфрама и других металлов. Из перегретых под давлением водных растворов в трещинах горных пород выделяются гидротермальным путем сульфиды железа, сурьмы, цинка, ртути, мышьяка,, карбонаты, золото, серебро и другие вещества.  [c.35]

Многочисленные цветные металлы в свою очередь подразделяются в зависимости от физико-механических свойств на ряд групп тяжелые (медь, никель, свинец, цинк, олово) легкие (алюминий, магний, кальций, бериллий, титан, литий, барий, стронций, натрий, калий, рубидий, цезий) благородные (золото, серебро, платина, осмий, рутений, родий, палладий) редкие металлы. Последние в свою очередь условно делят на тугоплавкие (вольфрам, молибден, ванадий, тантал, ниобий, цирконий) редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.) рассеянные (германий, рений, селен и др.) и радиоактивные (уран, торий, радий, протактиний).  [c.20]

Цветные металлы, в свою очередь, подразделяют в зависимости от их физико-механических свойств на ряд групп тяжелые (никель, медь, цинк, олово, свинец), легкие (литий, бериллий, натрий, магний, алюминий, калий, кальций, титан, рубидий, стронций, цезий, барий) благородные (рутений, родий, палладий, серебро, осмий, платина, золото) и редкие, которые, в свою очередь, условно делят на тугоплавкие (ванадий, цирконий, ниобий, молибден, тантал, вольфрам), редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.), рассеянные (германий, селен, рений и др.) и радиоактивные (радий, торий, протактиний, уран).  [c.5]

Скорость окисления титана снижается при легировании его алюминием или вольфрамом. Небольшие добавки бериллия, лантана, тория, кальция (0,005—0,05%) повышают, а добавки циркония или бора понижают жаростойкость титана, легированного алюминием. Олово, цирконий и железо сильно понижают жаростойкость титана.  [c.68]

Легирование алюминия кадмием подавляет вредное действие меди. Свинец слабо влияет на стойкость алюминия. Титан в количестве выше 0,01% усиливает коррозию в окислительных средах. Вредное действие оказывают церий, кобальт, платина, серебро, торий, ванадий [137]. Хром, олово, кадмий в ряде случаев не влияет, а в ряде случаев — усиливает коррозию. Сурьма повышает коррозионную стойкость алюминия.  [c.75]


Чтобы завершить исторический очерк, дадим короткий обзор современных направлений в электрополировке. 0.на применяется для полирования следующих металлов и металлоидов алюминия, сурьмы, серебра, висмута, кадмия, хрома, кобальта, меди, олова, железа (включая углеродистые, нержавеющие и другие легированные стали, ферросилиций, чугуны), бериллия, германия, золота, гафния, индия, свинца, магния, марганца, молибдена, никеля, ниобия, палладия, платины, тантала, тория, титана, вольфрама, урана, ванадия, цинка и циркония. К этому списку следует добавить большое число одно-и многофазных сплавов, ряд окислов металлов [21] и графит [22].  [c.18]

Титан в настоящее время получается методами порошковой металлургии в небольших масштабах по сравнению с методами дугового плавления (см. стр. 576—577, табл. 3 и 4). Цирконий и его сплавы с оловом, полученные методами порошковой металлургии, содержат повышенное количество кислорода и азота и не обладают той высокой коррозионной стойкостью, какую имеют сплавы, полученные дуговым плавлением. Методы порошковой металлургии применяются наряду с другими методами для производства заготовок и изделий из тория, ванадия и бериллия. Более подробные сведения о редких и тугоплавких металлах см. в гл. VIII Редкие металлы и их сплавы и X Титан и его сплавы .  [c.598]

Из изложенных данных вытекает ряд соображений, полезных при выборе и применении титановых сплавов в машиностроительных конструкциях. В частности, максимальной теплопроводностью обладают титан и сплавы системы Ti—Zr—А1—Р-стабплизатор при минимальном содержании алюминия и содержании Р-стаби-лизаторов в пределах их растворимости в а-фазе титана. При этом содержание кислорода и азота по аналогии с алюминием должно быть минимально. Целесообразно учитывать, что коэффициент теплопроводности сплавов титана увеллчивается с повышением температуры. В тех случаях, когда требуется высокое тепловое сопротивление, предпочтительными являются сплавы с повышенным содержанием алюминия, олова и р-стабилиза-торов.  [c.22]

Коэффициент теплового расширения титана может заметным образом изменяться в зависимости от содержания примесных и легирующ,их элементов а-стабилизаторы, в частности кислород, уменьшают а цирконий уменьшает его незначительно, несколько увеличивается при легировании оловом, а также р-стабилиза-торами [18]. У промышленных сплавов коэффициент теплового расширения находится в пределах от 7,3 до 11,2-10 °С (в основном от 8,0 до 9,2-10 °С" ), что соизмеримо с пределами его изменения, обусловленного текстурованностью прутков нелегированного титана (от 6,7 до 10,4-10 °С . При этом у любого из титановых сплавов коэффициент теплового расширения меньше, чем у железа и углеродистых сталей и существенно меньше, чем у нержавеющих сталей, меди и алюминия.  [c.26]

Кре.мний находится в IV группе периодической таблицы. Во многих своих соединениях он проявляет заметное сходство с углеродом, особенно в тех случаях, когда он является более электропможительным элементом в соединении. Кремний по своим свойствам очень напоминает также германий, олово н свинец. С титаном, цирконием, гафнием и торием ои имеет меньшее сходство, причем сходство уменьшается с увеличен1гем атомного веса эле.мента.  [c.330]

Показана принципиальная возможность извлечения и концентрирования ряда элементов из морской воды с использованием хелатных смол Хелекс-100 и Пермутит S1005, содержащих аминодвууксусные группировки. Серебро, висмут, кадмий, кобальт, церий, медь, индий, марганец, молибден, скандий, торий, вольфрам, ванадий, иттрий и цинк извлекаются полностью, ртуть, рений и олово — на 85—90% [198].  [c.197]

Цирконий, как и титан, образует две аллотропические модификации, а-цир-коний кристаллизуется с образованием гексагональной решетки, а высокотемпературная Р-фаза имеет кубическую объемноцентрироваиную решетку. Температура превращения равна 862° С. Водород, марганец, железо, никель, хром, вольфрам, молибден, ванадий, ниобий, тантал, титан, торий и уран снижают температуру превращения. Они являются Р-стабилизаторами. Углерод и кремний ие влияют иа температуру превращения, а-стабилизаторами, повышающими температуру превращения, являются кислород, азот, алюминий, олово и гафний.  [c.104]

Кроме того, залежи тория встречаются в Голландской Индии, в Австралии (на восточном побережье, в штатах Квинсленд и Новый Уэльс), в Малайе (отходы при получении олова), в СССР, на Мадагаскаре, в Африке и в США.  [c.175]

Термические напряжения пропорциональны а//(. Величины этого отношения для ряда металлов приведены в табл. 2. Это отношение значительно больше для неко-торых металлов, таких, как свинец, олово, кадмий, щелочные металлы и металлы титановой группы, а также для многих сплавов. Термические деформации в таких материалах могут на порядок и больше превышать величину термических деформаций в золоте.  [c.323]

Коррозия в присутствии деполяриэ Х.ч торов. Коррозия олова ускоряется в пр  [c.414]

Никель Ниобий Олово Осмий Палладий Платина Полоний Празеодим Протактиний Радий Рений Родий Ртуть Рубидий Рутений Самарий Свинец обыкновенный Свинец тори-евый Свинец урановый Селен Сера Серебро Скандий Стронций Сурьма Таллий Тантал Теллур Тербий Титан Торий Тулий Углерод Уран Фосфор Фтор Хлор Хром Цезий Церий Цинк Цирконий Эманация Эрбий  [c.27]

Твердость и другие механические свойства твердых растворов мало зависят от твердости составляющих их элементов. Растворимый металл увеличивает твердость металла-растворителя обратно пропорционально своей растворимости в твердом состоянии. Например, никель полностью растворяется в меди, однако незначительно увеличивает ее твердость, тогда как олово, растворимость ко-< езаполненый торого в меди составляет менее 14 %, узел решетки дает значительное увеличение ее твердости. В данном случае атомы растворимого очень сильно искажают решетку растворителя, увеличивая этим не только его твердость, но повышая и другие механические свойства.  [c.46]


Литий Натрий. Калий Рубидий. Цезий. . Медь. . Серебро. Золото Бериллий Магний. Кальций Стронций Барий, . Радий. . Цинк. . Кадмий Ртуть. . Бор. . . Алюминий Скандий. Иттрий Лантан. Актиний Галлий Индий Таллий Кремний Германий Олово. . Свинец Титан. . Цирконий Гафний. Ванадий. Ниобий. Тантал Сурьма. Висмут Хром. . Молибден Вольфрам Селен. . Теллур. Марганец Рений. . Железо. Кобальт. Никель Рутений. Родий. . Палладии Осмнй. . Иридий. Платина Торий. . Уран. . Лантан Церий  [c.293]


Смотреть страницы где упоминается термин Олово - торий : [c.196]    [c.348]    [c.111]    [c.105]    [c.14]    [c.36]    [c.43]    [c.396]    [c.329]    [c.424]    [c.213]    [c.55]    [c.261]    [c.349]    [c.225]   
Смотреть главы в:

Диаграммы состояния двойных металлических систем Т.3  -> Олово - торий



ПОИСК



Олово

Торий



© 2025 Mash-xxl.info Реклама на сайте