Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Природа разрушения при циклических нагрузках

За последние годы в СССР и за рубежом опубликован ряд работ по металловедению и технологии титановых сплавов, отражены современные подходы к проблеме их разрушения. Вопросы же циклической прочности и долговечности титановых сплавов с учетом влияния агрессивных сред освещены мало. Авторы попытались на основании собственных исследований и обобщения имеющихся отечественных и зарубежных материалов установить основные закономерности изменения свойств титановых сплавов при циклических нагружениях. Особое внимание при этом обращено на рассмотрение природы процессов накопления циклических повреждений в условиях агрессивных сред и на выявление факторов, отрицательно сказывающихся на надежности и эксплуатации при циклических нагрузках.  [c.4]


Охрупчивание стали может происходить как при статическом так и при динамическом нагружении. Большое количество оболочковых конструкций нефтегазовой отрасли в течение срока службы претерпевают порядка 10 циклов изменения нагрузки. Циклические нагрузки вызывают малоцикловую усталость и коррозионную усталость металла в концентраторах напряжений. Несмотря на известный факт о коррозионно-механической природе разрушения нефтегазового оборудования и стадийности усталостного разрушения, не рассмотрены некоторые вопросы развития усталостных треш,ин.  [c.7]

Коррозионная усталость, представляющая собой сложный процесс разрушения металлов при одновременном воздействии на них химической или электрохимической коррозии и циклической нагрузки. Коррозионноусталостным разрушениям подвергается большое количество ответственных деталей машин и механизмов [138]. Наибольшее практическое значение (как и в случаях коррозионного растрескивания при статическом растяжении) в настоящее время имеют разрушения при одновременном воздействии на металл циклической нагрузки и электрохимической коррозии. Природа и механизм коррозионноусталостного разрушения металлов подобны описанным выше для случаев коррозионного растрескивания при статическом растягивающем напряжении. По данным советских исследователей [138], концентрация знакопеременных напряжений на ослабленных первоначальными очагами коррозии участках металла обусловливает более быстрое разблагораживание значений их потенциалов и ускоренное развитие трещин коррозионной усталости.  [c.213]

Механизм пластической деформации и разрушения металлов при циклических нагрузках по своей природе принципиально не имеет различий. В обоих случаях имеет место искажение атомной кристаллической решетки по плоскостям сдвига. Однако при статическом нагружении пластическая деформация действует в одном направлении и распространяется более или менее равномерно на все кристаллиты, в то время как при циклических нагрузках пластическая деформация сосредоточивается лишь в отдельных зернах, вызывая переменные по направлению сдвиги.  [c.120]

Из сказанного видно, что механизм образования трещин и разрушения материалов при циклическом действии нагрузки весьма сложен и до конца не изучен. Природа усталостного разрушения обусловлена особенностями молекулярного и кристаллического строения вещества. Поэтому модель сплошной среды не является применяемой для ее исследования. Для создания теоретических основ усталостной прочности и разрушения материалов необходимо изучить  [c.294]


Процессы усталостного повреждения, условия возникновения и распространения трещин под циклической нагрузкой носят случайный характер, так как тесно связаны со структурной неоднородностью материалов и локальным характером разрушения в микро- и макрообъемах. Усталостные разрушения обычно возникают на поверхности, поэтому качество и состояние поверхности часто является причиной случайных отклонений в образовании разрушения. Эта особенность усталостных явлений порождает существенное рассеяние механических характеристик, определяемых при испытании под циклической нагрузкой. Рассеяние свойств при усталостном разрушении значительно превышает рассеяние свойств при хрупком и вязком разрушениях. В связи с этим статистический анализ и интерпретация усталостных свойств материалов и несущей способности элементов конструкций позволяют отразить их вероятностную природу, являющуюся основным фактором надежности изделий в условиях длительной службы.  [c.129]

Методика определения ресурса разработана по данным исследований физической природы разрушения, проведенных школой акад. С.Н. Журкова в ФТИ им. А.Ф. Иоффе РАН. Установлено, что нагрузка переводит материал в метастабильное состояние, релаксирующее посредством термических активации. Разрушению нагруженных статически либо циклически одноосным растяжением (изгибом, сжатием) твердых тел предшествует протекающий во времени кинетический процесс, включающий в общем случае две стадии термоактивированного трещинообразования делокализованное накопление стабильных начальных трещин (повреждений) в объеме тела или его части, выделенной присутствием дефекта-концентратора напряжения, сопровождающееся спонтанной статистической кластеризацией (появлением трещин более крупных, чем начальные), приводящей к формированию очага разрушения - зародышу магистральной трещины (первая стадия), и локализованный рост магистральной трещины путем присоединения начальных трещин, генерируемых в ее вершине (вторая стадия), переходящий в атермический режим. Начальные трещины обусловлены разрушением элементов материала и их размеры воспроизводят его структурную иерархию.  [c.46]

Таким образом, физическая природа интенсификации микропластичес-кого течения в поверхностных слоях материалов и последующего усталостного разрушения при циклических нагрузках должна рассматриваться именно с указанных позиций. При этом следует отметить, что необратимое действие вакансионного насоса при циклировании, создающего спектр приповерхностных источников дислокаций и вызывающего их переползание, обеспечивается не только созданием периодического пересыщения при цикле сжатия и существующим недосыщением на стоках [601, 602], но и различием потенциальных энергетических барьеров на источниках и стоках точечных дефектов, непосредственно на поверхности и в более удаленных от поверхности приповерхностных слоях. Поэтому полученные в главе 7 результаты представляют основу для дальнейшего развития как теоретических, так и экспериментальных исследований в области изучения основных закономерностей эволюции дислокационной структуры при испытаниях на длительную и циклическую прочность и физической природы усталости металлических и неметаллических материалов в различном диапазоне напряжений и температур. Наконец, учитывая результаты работы [586], следует также весьма осторожно относиться к интерпретации низкотемпературных пиков внутреннего трения и помнить, что они могут появиться в ряде случаев именно в силу проявления методических особенностей способа нагружения (использование циклических изгибных или крутильных колебаний с максимальной величиной напряжений вблизи свободной поверхности и присутствием градиента напряжений по сечению кристалла).  [c.258]


Сорелл и Хойт нашли также, что связь между скоростью коррозии и содержанием сероводорода проще всего выразить через парциальное давление сероводорода в газовой смеси, а не через его вес, объем или процентное содержание. Оказывается, что общее высокое давление не влияет на скорость коррозии. Кривая скорость—время является по своему характеру квазиэкспоненци-альной большая скорость вначале, затем уменьшение ее до истечения 100 или 200 ч, после чего скорость остается постоянной. Циклические нагрузки, например попеременное нагревание и охлаждение или попеременное действие окислительной или восстановительной атмосфер, как это имеет место при каталитическом риформинге, ускоряют коррозию, поскольку они вызывают разрушение сульфидной окалины. Природа основного газа обычно не играет существенной роли, за исключением водорода, который может ускорять коррозию. Как ни странно, примеси небольших количеств воды, хлоридов или органических кислот мало или совсем не влияют на высокотемпературную сероводородную коррозию.  [c.265]


Смотреть страницы где упоминается термин Природа разрушения при циклических нагрузках : [c.6]    [c.93]   
Смотреть главы в:

Сопротивление материалов Учебное пособие  -> Природа разрушения при циклических нагрузках



ПОИСК



Нагрузка циклическая

Нагрузки по разрушению

Природа

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте