Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Течение вблизи передней критической точки цилиндра

ТЕЧЕНИЕ ВБЛИЗИ ПЕРЕДНЕЙ КРИТИЧЕСКОЙ ТОЧКИ ЦИЛИНДРА  [c.55]

ТЕЧЕНИЕ В ПОГРАНИЧНОМ СЛОЕ ВБЛИЗИ ПЕРЕДНЕЙ КРИТИЧЕСКОЙ ТОЧКИ ЦИЛИНДРА  [c.93]

Круглый цилиндр иару(жяым диаметром 0,05 м обтекается поперечным потоком воздуха, имеющим температ уру 27 °С, скорость 9 м/сек и давление 1 бар. С помощью теории потенциального течения можно показать, что вблизи передней критической точки скорость на внешней границе пограничного слоя определяется выражением  [c.126]


В дальнейщем в целях ориентировочного предварительного изучения общей задачи, содержащей вполне корректные предположения, в качестве основного течения рассматривается идеализированный случай так называемого плоского течения при наличии критической точки и исследуется его устойчивость. Это идеализированное течение описано точным решением уравнений Навье—Стокса для перпендикулярного обтекания бесконечной плоской стенки. Указанное течение можно аппроксимировать на реальное течение в окрестности передней критической точки цилиндра. Однако при этом следует иметь в виду появление известных вырождений задачи. В то же время нельзя получить критическое число Рейнольдса, если рассматривать только уравнение Навье — Стокса. Кроме того, при значительном удалении от критической точки и возрастании скорости состояние потока во всей массе жидкости можно считать состоянием как бы на бесконечности тогда возмущения, налагаемые на поток, оказывают относительно малое влияние. Таким образом, подобное предварительное исследование дает лишь качественное объяснение возникновения неустойчивости потока вблизи критической точки.  [c.261]

Тц,6/(1 1, а также х от формпараметра Л. В результате получаются уравнения (4-15) и (4-16), выражающие зависимость I, Н, I от х, с интегральным уравнением количества движения в виде (4-17), для численного интегрирования которого затабулпрованы соответствующие функции. Анализ полученных данных позволил Р. Тимману заключить, что его уточнение метода К- Польгаузена дает удовлетворительные результаты вблизи передней критической точки и в случае симметричного обтекания цилиндра. На примере изменения скорости внешнего потока по закону 1(л ) = Ро[1—Е], где =х/с, с — характерный размер обтекаемого тела, он показал, что результаты значительно хуже в областях течения с положительным градиентом давления. Поэтому Р. Тимман рекомендовал для потоков с йр1йх заменить условие =0 условием 2й—6 = 0. Это условие выбрано так, чтобы гарантировать удовлетворение сложного четвертого условия (4-19) в сечении отрыва. Оно случайно привело к значениям а, >, с и й, непрерывным в точке Л=0. Такой подход дает результаты, которые хорошо согласуются с результатами численных методов решения уравнений пограничного слоя, рассмотренных в 4-2—4-4.  [c.124]

Рассмотрим в качестве примера потенциальное бесциркуляционное обтекание круглого цилиндра ( 4 гл. 7). Начиная от передней критической точки /<1, давление убывает dpldx < 0), а скорость возрастает вплоть до точки С, за которой начинается обратное изменение давления и скорости. Жидкие частицы на участках пути вблизи границы Ki испытывают ускорение, обусловленное падением давления в направлении движения, и их кинетическая энергия возрастает. В идеальной жидкости этому ускорению ничто не препятствует, но в реальной движение тормозится трением, развивающимся благодаря прилипанию жидкости к твердой поверхности и образованию пограничного слоя. Все же благодаря прямому перепаду давления ускорение в нем наблюдается, по крайней мере, до точки С. Иначе обстоит дело на участках С/<2. Здесь dpldx > 0 и частицам приходится двигаться против нарастающего давления, В идеальной жидкости это приводит лишь к убыванию кинетической энергии и восстановлению полного давления, достигаемого в точке К2- В реальной жидкости часть кинетической энергии должна быть затрачена еще на компенсацию работы сил трения, оказывающих тормозящее действие. В связи с этим частицы, двигавшиеся в пограничном слое и имевшие малый запас кинетической энергии, начиная с некоторой точки О (рис. 186), не могут уже преодолевать совокупное действие обратного перепада давления и трения они в этом сечении останавливаются, а частицы, двигающиеся по более удаленным от тела траекториям, отклоняются в сторону внешнего потока. Часть жидкости, расположенная ниже точки О, под действием обратного градиента давления получает возвратное движение. Это явление и называют отрывом пограничного слоя. Структура течения и конфигурация линий тока вблизи точки отрыва показаны ка рис. 186.  [c.382]



Смотреть страницы где упоминается термин Течение вблизи передней критической точки цилиндра : [c.257]   
Смотреть главы в:

Гидродинамика и тепломассообмен в пограничном слое Справочник  -> Течение вблизи передней критической точки цилиндра



ПОИСК



Критические течения

Критические точки. См, точки критические

Передняя ось

Течение в пограничном слое вблизи передней критической точки цилиндра

Точка критическая

Цилиндр течение его



© 2025 Mash-xxl.info Реклама на сайте