Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задачи к главе I Упругий удар

В предшествующих главах рассматривались задачи статики упругого тела. Предполагалось, что под действием не изменяющихся во времени внешних сил тело находится в состоянии покоя. Если же такие изменения и допускались, то они считались достаточно медленными, чтобы можно было оправдать предположение о статическом состоянии тела в любой момент времени (например, в теории удара Герца, стр. 421), т. е. рассматривались квазистатические задачи.  [c.489]


Свойство это важно не только потому, что дает наглядную картину упругого удара, но и в другом отношении. При выводе формулы мы говорили о телах ударяемом и ударяющем , настигаемом и настигающем , относя движение их, конечно, только к некоторому третьему телу, не участвующему в их движениях. Но в первой главе нашей книги (вспомните задачу о двух яйцах) было уже разъяснено, что между телами ударяющим и ударяемым никакой разницы нет роли их можно обменять, ничего яе изменяя в картине явления. Справедливо  [c.105]

В настоящей главе приведены решения задач о распространении волн напряжений, возникающих при ударе и взрыве большой мощности в телах конечных размеров, физико-механические свойства которых наиболее близки к реальным (это упругие, вязкоупругие, упругопластические или вязкоупругопластические тела), с учетом механических и тепловых эффектов. Решения задач, как правило, проанализированы и представлены в форме, допускающей использование ЭВМ.  [c.221]

Суш ественно дополнены новыми задачами главы 1, 4, б, 7. В главу 1 введен новый раздел Космодинамика . Здесь собраны задачи, в которых вектор Лапласа используется для анализа коррекции траектории космического аппарата в пространстве и относительного движения в окрестности траектории космического аппарата. Приведено решение задачи о движении в космосе с малой тягой и задача о гравитационном ударе при облете планеты. Изложены решения задачи двух тел, упругого рассеяния частиц, ограниченная задача трех тел, рассмотрен вклад Луны в ускорение свободного падения. В главу б вошли задачи о движении маятника Пошехонова, гирокомпаса, кельтского камня, гироскопической стабилизации и пределе Роша. Раздел Электромеханика содержит 20 задач, в которых рассмотрены бесконтактные подвесы, космическая электростанция, униполярный генератор Фарадея, электромагнит, асинхронный двигатель, проводники во враш аюш емся магнитном поле, движение диэлектриков и парамагнетиков в неоднородном поле.  [c.5]

Настоящая глава посвящена исследованию эффектов кратковременного возмущения большой интенсивности (взрыв и удар) в пространстве и полупространстве. Средой является материал, обладающий следующими свойствами упругостью, вязкоупругостью, упругоплас-тичностью и вязкоупругопластичностью. Рассматривается задача о внедрении тела в деформируемую среду и определяется напряжение в среде при внедрении, а также задача об ударе тела в преграду конечной толщины. Решения задач представлены в виде, позволяющем широко использовать при их реализации ЭВМ.  [c.86]


При решении ряда технических вопросов прочности приходится иметь дело с задачами динамики. Например, при расчете многих машинных частей, участ-вуюпцих в движении, приходится принимать во внимание силы инерции. И напряжения, вызываемые этими силами, иногда во много раз больше тех, которые получаются от статически действующих нагрузок. Такого рода условия мы имеем при расчете быстровращающихся барабанов и дисков паровых турбин, шатунов быстроходных машин и паровозных спарников, маховых колес и т. д. Решение таких задач может быть выполнено без особых затруднений, так как здесь деформации не играют роли мы можем при подсчете сил инерции рассматривать тела как идеально твердые и потом, присоединив найденные таким путем силы инерции к статическим нагрузкам, привести задачу динамики к задаче статики. Эти задачи достаточно полно были рассмотрены в курсе сопротивления материалов, и мы на них здесь останавливаться не будем, а перейдем к другой группе вопросов динамики — к исследованию колебаний упругих систем под действием переменных сил. Мы знаем, что при некоторых условиях амплитуда этих колебаний имеет тенденцию возрастать и может достигнуть таких пределов, когда соответствующие ей напряжения становятся опасными с точки зрения прочности материалов. Выяснению таких условий, главным образом по отношению к колебаниям призматических стержней, и будет посвящена настоящая глава. Как частные случаи рассмотрим деформации, вызываемые в стержнях внезапно приложенными силами, и явление удара.  [c.311]

Рассмотренные до сих пор в этой главе пластические волны возникали при растяжении проволоки выше предела упругости. Точно такой же анализ можно распространить на задачу о внезапном сжатии эта теория была применена к соударению стержней Уайтом [157] и Де Югасом [30]. Если один конец стержня внезапно сжат выше предела упругости и напряжение здесь поддерживается, то вдоль стержня будет распространяться упругая волна сжатия, за которой будет следойать, но медленнее, пластическая волна. При снятии напряжения вдоль стержня начнет распространяться волна разгрузки, которая в этом случае будет волной растяжения. Поскольку ее скорость больше скорости пластической волны, то она настигнет фронт последней и при этом, как показано в предыдущем параграфе, уменьшит ее амплитуду. В стержне конечной длины упругая волна отражается от другого его конца, причем если этот конец закреплен, то при отражении возникает пластическая волна. Таким образом, если один конец стержня сжат на короткое время, а затем освобожден, то несколько различных волн будут распространяться в обоих направлениях, и распределение напряжений через некоторое время после удара становится чрезвычайно запутанным.  [c.160]


Смотреть страницы где упоминается термин Задачи к главе I Упругий удар : [c.148]   
Смотреть главы в:

Механика  -> Задачи к главе I Упругий удар



ПОИСК



Задача упругости

Задачи к главе

Удар упругий



© 2025 Mash-xxl.info Реклама на сайте