Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплоотдача при пузырьковом кипении жидкости в условиях свободного движения

Расчет теплоотдачи при пузырьковом кипении жидкости в большом объеме в условиях свободного движения можно выполнить, воспользовавшись с.1е-дующим приближенным уравнением подобия  [c.124]

ТЕПЛООТДАЧА ПРИ ПУЗЫРЬКОВОМ КИПЕНИИ ЖИДКОСТИ В УСЛОВИЯХ СВОБОДНОГО ДВИЖЕНИЯ  [c.308]

Приближенная автомодельность теплоотдачи относительно величины g (или, что то же самое, отрывного диаметра do) для развитого пузырькового кипения подтверждается рядом экспериментов, проведенных как. при перегрузках, так и при малых значениях ускорения поля тяжести, т. е. при условиях, приближающихся к условиям невесомости. Эти же соображения объясняют и то, что закономерности развитого кипения в условиях свободного и вынужденного движения кипящей жидкости являются практически одинаковыми. Ряд внешних факторов (вибрация поверхности, наложение электрических полей и др.) оказывают влияние на теплоотдачу лишь при малых плотностях теплового потока. Но с увеличением q их влияние постепенно вырождается [Л. 102].  [c.311]


Как отмечалось выше, при пленочном кипении жидкость отделена от обогреваемой поверхности паровым слоем. Теплота к поверхности раздела фаз поступает через малотеплопроводный слой пара. В условиях свободного движения коэффициент теплоотдачи мало изменяется с изменением теплового потока (рис. 13-18). Влияние давления и физических свойств на теплоотдачу сохраняется существенным, как и при пузырьковом кипении.  [c.318]

Приближенная автомодельность теплоотдачи относительно величины g (или, что то же самое, величины отрывного диаметра do) для развитого пузырькового кипения подтверждается рядом экспериментов, проведенных как при перегрузках, так и при малых значениях ускорения поля тяжести, т. е. при условиях, приближающихся к условиям невесомости. Эти же соображения объясняют и то, что закономерности развитого кипения в условиях свободного и вынужденного движений кипящей жидкости являются практически одинаковыми.  [c.308]

На рис. 14.9, б показана установленная опытом зависимость дна от температурного напора А/для случая кипения воды в большом объеме при атмосферном давлении. В области между точками А н В, соответствующей А/ 5 °С и д = 5600 Вт/м , значение коэффициента теплоотдачи невелико и определяется условиями свободной конвекции однофазной жидкости. При дальнейшем повышении А/ плотность теплового потока быстро возрастает и при = 25 °С доходит до своего критического значения (7j,p T = 1,45 10 Вт/м (точка D). В этой области (между точками В и С) вследствие роста и движения пузырьков пара коэффициент теплоотдачи а также резко увеличивается и доходит до своего максимального значения 5,85 10 Вт/ (м К) у точки С, в которой при дальнейшем повышении А/ происходит изменение режима кипения. Пузырьковая форма парообразования (называемая также ядерной или ячейковой) переходит в пленочную, значение а резко падает, поскольку образовавшаяся пленка пара отделяет жидкость от нагретой стенки.  [c.254]

Как указывалось выше (п. 8.2.3), теплообмен при развитом пузырьковом кипении полностью управляется своими внутренними механизмами и не зависит от скорости вынужденного движения. Однако это не означает, что вынужденное движение вообще не влияет на закономерности кипения. Прежде всего с ростом скорости течения жидкости Wq возрастает коэффициент теплоотдачи однофазной конвекции и, следовательно, при неизменной плотности потока q уменьшается перегрев стенки относительно. Это приводит к тому, что начало кипения в потоке жидкости происходит при тем больших q, чем выше скорость жидкости. Эта закономерность хорошо видна из рис. 8.5, на котором представлены сглаженные опытные зависимости q(AT), полученные одним из авторов [17]. Теплообмен происходил на омываемой потоком воды плоской пластине при давлении 3,92 бар. Кривая 1 соответствует кипению при свободном движении (в большом объеме). В условиях обтекания пластины потоком воды до начала закипания коэффициент теплоотдачи не зависит от плотности теплового потока и целиком определяется скоростью жидкости (кривые 2, 3, 4). С ростом теплового потока при постоянном а, растет температура стенки, и при некотором значении  [c.355]


В известной мере этих недостатков лишен метод обработки опытных данных, предложенный в [Л. 3]. В нем принимается, что теплоотдача при поверхностном и объемном, а также при кипении в неограниченной и ограниченной системах определяется в основном одними и теми же факторами что интенсивность теплообмена при пузырьковом кипении смачивающих жидкостей определяется главным образом интенсивностью пульсаций частиц жидкости, имеющими место в области, прилегающей непосредственно к стенке условия движения жидкости вдали от поверхности нагрева т. е. в объеме, не оказывают существенного влияния на теплоотдачу причина возникновения движения жидкости в объеме (свободное, вынужденное движение)- также не оказывает существенного влияния на теплоотдачу, так как опыт показывает, что организованное движение жидкости приводит к увеличению коэффициента теплоотдачи только при относительно небольших тепловых потоках.  [c.229]

Лабунцов Д. А. Обобщенные зависимости для теплоотдачи при пузырьковом кипении жидкостей. — Теплоэнергетика, 1960, № 5, с. 76—81. Обобщенные зависимости для критических тепловых нагрузок при кипении жидкостей в условиях свободного движения. — Теплоэнергетика, 1960, №7, с. 76—80.  [c.285]

Гл. 7 и 8 в наибольшей степени имеют прикладной характер. В гл. 7 вводятся основные количественные характеристики, обычно используемые при одномерном описании двухфазных потоков в каналах расходные и истинные паросодержания, истинные и приведенные скорости фаз, скорость смеси, коэффициент скольжения, плотность смеси. При рассмотрении методов прогнозирования режимов течения (структуры) двухфазной смеси акцент делается на методы, основанные на определенных физических моделях. Расчет трения и истинного объемного паросодержания дается раздельно для потоков квазигомогенной структуры и кольцевых течений. В гл. 8 описаны двухфазные потоки в трубах в условиях теплообмена. Приводится современная методика расчета теплоотдачи при пузырьковом кипении жидкостей в условиях свободного и вынужденного движения. Сложная проблема кризиса кипения в каналах излагается прежде всего как качественная характеристика закономерностей возникновения пленочного кипения при различных значениях  [c.8]

Теплоотдача при пузырьковом кипении в условиях вынужденной конвекции жидкости. Пусть процесс пузырькового кипения происходит в трубе, по которой течет жидкость. Вынужденное движение жидкости может привести к более интенсивной теплоотдаче по сравнению со случаем кипения в большом объеме при свободном движении жидкости. Увеличение интенсивности теплоотдачи произойдет в том случае, когда турбулентные возмущения, вызванные вынужденным движениСлМ жидкости, станут больше тех, которые вызваны пузырьковым парообразованием.  [c.267]


Смотреть главы в:

Теплопередача Изд.3  -> Теплоотдача при пузырьковом кипении жидкости в условиях свободного движения



ПОИСК



Движение жидкости свободное

Движение свободное

Движения условия

ЖИДКОСТИ Кипение — Теплоотдача

Кипение

Кипение Теплоотдача

Кипение жидкости

Кипение пузырьковое

Теплоотдача

Теплоотдача при пузырьковом кипении

Теплоотдача при свободном движении жидкост

Теплоотдача при свободном движении жидкости



© 2025 Mash-xxl.info Реклама на сайте