Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контактные явления в полупроводниках

Инжекция осн. носителей происходит, наир., при подаче обратного смещения на р — п-нереход, если у катода имеется слой, обогащённый осн. носителями см. Контактные явления в полупроводниках). При. этом в образце появляется пространств, заряд, препятствующий дальнейшему поступлению носителей из обогащённого слоя. Плотность / стационарного тока определяется условием, что падение напряжения внутри образца, обусловленное пространств, зарядом, уравновешивается внеш. напряжением f/ (закон Мот-т а)  [c.148]


КОНТАКТНЫЕ ЯВЛЕНИЯ В ПОЛУПРОВОДНИКАХ — неравновесные электронные явления, возникающие при прохождении электрич.тока через контакт полупроводника с металлом или электролитом или через контакт двух различных полупроводников (гетеропереход) либо через границу двух областей одного и того же полупроводника с разным типом  [c.446]

КОНТАКТНЫЕ ЯВЛЕНИЯ В ПОЛУПРОВОДНИКАХ  [c.70]

Вентильный фотоэффект. Вентильный фотоэффект — это явление возникновения э. д. с. при освещении контакта двух разных полупроводников или полупроводника металла в отсутствие внешнего электрического поля. На этом явлении основаны вентильные фотоэлементы, обладающие тем преимуществом перед фотосопротивлениями и внешними фотоэлементами, что они могут служить индикаторами лучевой энергии, не требующими внешнего питания. Но главная особенность вентильных фотоэлементов состоит в том, что они открывают путь для прямого превращения солнечной энергии в электрическую. В начале нашего века существовали фотоэлементы, работающие на контактах полупроводников и металлов. Однако в дальнейшем было показано, что наиболее эффективными являются фотоэлементы, основанные на использовании контакта двух полупроводников с р- и -типами проводимости, т. е. на так называемом р- -переходе. При освещении перехода в р-области образуются электронно-дырочные пары. Электроны и дырки диффундируют к р- -переходу. Электроны под действием контактного поля будут переходить в -область. Дырки же преодолевать барьер не могут и остаются в р-области. В результате р-область заряжается положительно, -область — отрицательно и в р-я-переходе возникает дополнительная разность потенциалов. Ее и называют фотоэлектродвижущей силой (фото-э. д. с.).  [c.346]

ЯВЛЕНИЯ <гальваномагнитные — явления, вызванные действием магнитного поля на электрические свойства твердых проводников, по которым течет электрический ток капиллярные— явления, обусловленные смачиванием и поверхностной энергией на границе фаз на уровне межмолекулярных сил контактные — электрические явления, возникающие в зоне контакта металлов или полупроводников переноса — необратимые процессы, приводящие к пространственному перемещению массы, энергии и т. п., возникающие вследствие действия внешних силовых полей или наличия пространственных неоднородностей состава, температуры)  [c.303]

ЗАПОРНЫЙ СЛОЙ (обеднённый слой) — слой полупроводника с пониженной концентрацией осн. носителей заряда. Образуется около контакта с металлом, гетероперехода, моноперехода (р —п-перехода), свободной поверхности. Из-за ухода осн. носителей в 3. с. возникает заряд, противоположный им по знаку. Он скомпенсирован зарядом в металле, др. полупроводнике, в области с др. типом проводимости, на свободной поверхности (см. Контактные явлении в полупроводниках). Приложение прямого смещения обогащает 3. с. носителями, уменьшает в нём поле и сужает слой обратное смещение ещё сильнее обедняет 3. с. носителями, уве.ттичнвает соле и расширяет его. 3. с. с полностью ионизированными примесными атомами наз. слоем Шоттки. 3. с.—основной рабочий элемент полупроводникового диода, транзистора, варикапа и др. полупроводниковых приборов.  [c.52]


При протекании тока через контакт П. с металлом или др, П. неравновесные электроны и дырки заполняют цриконтактвую область, причём их кояцентрация зависит от величины тока, а толщина об.тасти, заполненной неравновесными носителями,— от длины, на к-рую они диффундируют за время жизни (см. Инжекция носителей заряда, Контактные явления в полупроводниках).  [c.42]

Ф, с сильным внутр. электрич. полем представляют собой полупроводниковые структуры с выпрямляющими контактами полупроводник—металл и гетеропереходами (см. также Контактные явления в полупроводниках). В таких Ф. свет возбуждает электроны в зону проводимости ниже уровня вакуума, а дополнительную энергию, необходимую для выхода в вакуум, фотоэлектроны приобретают в сильном электрич. поле внутри полупроводника. Длинноволновая граница таких Ф. определяется шириной запрещённой зоны полупроводника (Хо[мкм]я = l,24/ < j [эВ]). Ф. с выпрямляющим контактом полупроводник — металл изготавливаются на основе полупроводниковых соединений /i-InGaAs и -InGaAsP и представляют собой эпитаксиальные слои таких полупроводников, на поверхность к-рых наносится тонкая ( 10 нм) плёнка Ag. Работа выхода Ag снижается адсорбцией цезия и кислорода до величины а 1,1 эВ, Такие Ф. работают при включении на контакт внеш. напряжения в обратном направлении (плюс , на Ag) V=2—5 В. Фотоэлектроны, возбуждённые светом в зону проводимости, разогреваются. в сильном электрич. поле контакта и выходят в вакуум сквозь плёнку Ag, Ф. на основе InGaAs с 0,75 эВ имеют порог чувствительности /(-о 1,7 мкм, а квантовый выход достигает 10" —10 электрон/фотон при ).< 1,6 мкм.  [c.349]

Сильное электрич. поле (внешнее и внутреннее) влияет на Ф. э. из полупроводников. Внеш. электрич. поле в соответствии с эффектом Шоттки снижает величину х и тем самым сдвигает порог Ф. э. в длинноволновую часть спектра и повышает величину квантового выхода Ф. э. вблизи порога. Внутр. электрич. поле вблизи поверхности полупроводника ускоряет фотоэлектроны к поверхности, также увеличивая квантовый выход Ф. э. Если электрич. поле достагочно сильное, выйти в вакуум смогут даже фотоэлектроны, находящиеся в объёме полупроводника вблизи дна зоны проводимости ниже уровня вакуума. Дополнит. энергию, необходимую для выхода в вакуум, фотоэлектроны приобретают в электрич. поле. При этом порог Ф. э. будет определяться шириной запрещенной зоны полупроводника (Avq k s), к-рая может быть значительно меньше, чем Ф. Для создания областей сильного электрич. поля обычно используют полупроводниковые структуры с р—л-переходами и контактами полупроводник—металл (см. Контактные явления в полупроводниках). На рис. 5 представлены спектральные характеристики Ф. э. из контакта полупроводник — металл -lnGaAs — Ag. Работа выхода плёнки Ag снижена адсорбцией цезия и кислорода до Ф 1,1 эВ. При обратном смещении на контакте  [c.366]

Ф., действие к-рого основано на внутр. фотоэффекте, представляет собой полупроводниковый прибор с выпрямляющим полупроводниковым переходом (р—п-перехо-дом), изотипным гетеропереходом или контактом металл—полупроводник (см. Контактные явления в полупроводниках). При поглоп ении оптич. излучения в таком Ф. (рис. 1,6) увеличивается число свободных носителей заряда внутри полупроводника, к-рые пространственно разделяются электрич. полем перехода (контакта). Избыток носителей заряда, возникающий по обе стороны от потенц. барьера, создаёт в, полупроводниковом Ф. (ПФ) разность потенциалов, т. с. фотоэдс. При замыкании внеш. цепи ПФ через нагрузку начинает протекать электрич. ток, В качестве материала для ПФ наиб, часто применяют Se, GaAs, dS, Ge и Si.  [c.368]

НИЮ в области барьера дрейфовых потоков над диффузионными (см. Контактные явления в полупроводниках). Основные захономерности Э. н. з. определяются полем заряда, образующегося в объёме полупроводника. Поскольку знак этого заряда противоположен знаку носителей, вытягиваемых в контакт, создаваемое им поле препятствует Э. н. 3. Различия в механизме образования объёмного заряда приводят к необходимости подразделять Э. н. з. (так же, как инжекцию) на монополярную и биполярную (двойную), стационарную и нестационарную. Б. И. Фукс.  [c.506]

Настоящая книга написана в полном соответствии с программой курса, утвержденной Минвузом СССР 05.09.74 г., и представляет собой краткое введение в теорию широкого круга явлений, с которыми приходится непосредственно иметь дело конструктору и технологу радиоэлектронной и электронно-вычислительной аппаратуры. Цель книги — помочь читателю понять физическую природу механических, тепловых, магнитных и электрических свойств твердых тел, контактных и - поверхностных явлений в полупроводниках, наиболее широко используемых в современной радиоэлектронике. В книге освещены также термоэлектрические, гальваномагнитные, оптические и фотоэлектрические явления в полупроводниках и механизмы переноса зарядов в тонких пленках. На этих явлениях основана работа широкого класса электронных приборов датчиков температуры, индукции магнитного поля, фотоэлектрических приборов, лазеров, тонкопленочных элементов и т. п.  [c.3]


Формула (51) показывает, что при полном отсутствии микродефектов удельное сопротивление полупроводника величина постоянная. Для случая поверхностных слоев контакта это не так. Дело в том, что сама микрогеометрия поверхности уже обусловливает совершенно особые явления в тех контактных мостиках, которые оказываются на данный момент проводящими. Здесь имеют место и туннельный эффект, и явление фриттинга. Туннельный эффект — это свойство электронов проходить через потенциальный барьер, превышающий их среднюю энергию. Туннельный эффект наиболее вероятен при толщине оксидных ( изолирующих ) пленок не более 5-10" см.  [c.42]

Электрич. поле К. р. п. изменяет концентрации свободных носителей заряда (электронов, дырок) в при-контактном слое. Когда концентрация оси. носителей заряда Б полупроводниках понижается, прикоитактный слой представляет собой область повыш. сопротивления (запирающий слой). Т. к. концентрация носителей и, следовательно, сопротивление контакта изменяются несимметрично в зависимости от знака приложенного напряжения, то контакт двух полупроводников обладает вентильным (выпрямляющим) свойством. С К. р. п. связаны также вентильная фотоэдс, термоэлектричество В ряд др. электропных явлении. Па существовании  [c.445]

Ответ. Свойства веществ, рассматриваемых в задачах 5-9— 5-12, объясняются теорией выпрямления Мотта. В момент опубликования эта теория была весьма эффективна, однако в дальнейшем она обнаружила много противоречий с резу.яьтатами экспериментоп. Если основываться на теории Мотта, то при выпрямлении работа выхода должна играть решающую роль, однако в случае диода с точечным контактом, образованным в месте соединения тонкой проволоки с германием, независимо от материала проволоки (независимо от величины срт) обратный ток насыщения почти не изменяется. Для объяснения этого явления Бардиным была введена гипотеза о поверхностных уровнях, сущность которой заключается в предположении, что барьер в полупроводниковой области полностью экранирует контактное влияние металла, т. е. в учете энергетических состояний, которыми характеризуются электроны на поверхности полупроводника. В этом случае после ухода электронов, расположенных вблизи поверхности, на ней возникает положительный заряд (см. рис. 5-2-14). Когда плотность заряда на этом поверхностном уровне большая, не наблюдается ни изменения формы барьера в место контакта, ни изменения направления выпрями ления, ни обратного тока насыщения.  [c.331]


Смотреть страницы где упоминается термин Контактные явления в полупроводниках : [c.105]    [c.603]    [c.557]    [c.77]    [c.299]    [c.202]    [c.272]    [c.52]    [c.448]   
Смотреть главы в:

Электротехнические материалы  -> Контактные явления в полупроводниках

Электрорадиоматериалы  -> Контактные явления в полупроводниках



ПОИСК



Контактные явления

Полупроводники

Явление



© 2025 Mash-xxl.info Реклама на сайте