Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кусочно линейные поверхности нагружения

Кусочно линейные поверхности нагружения  [c.554]

КУСОЧНО ЛИНЕЙНЫЕ ПОВЕРХНОСТИ НАГРУЖЕНИЯ 555  [c.555]

Формулы (16.8.2) отличаются от (16.1.2) только тем, что в них не добавлена упругая деформация и незначительно изменены обозначения. Очевидно, что конечные соотношения (16.8.2) справедливы не только для пропорционального нагружения, но в гораздо более широких пределах изменения угла, под которым направлен вектор нагружения а. В этом состоит серьезное преимущество теории пластического течения с кусочно линейной поверхностью нагружения. Предположим теперь, что мы вышли на другую грань призмы, напри-мер на ту, которая соответствует условию  [c.555]


КУСОЧНО ЛИНЕЙНЫЕ ПОВЕРХНОСТИ НАГРУЖЕНИЯ 557  [c.557]

Мы не будем здесь рассматривать в деталях вопрос о модели трансляционного упрочнения с кусочно линейной поверхностью нагружения. Простая схема, приведенная на рис. 16.8.2, иллюстрирует эту разницу. Двигаясь в октаэдрической плоскости по радиальному пути нагружения при изотропном упрочнении, мы будем все время находиться на одной и той же стороне расширяющегося шестиугольника, представляющего собою след пересечения октаэдрической плоскости с расширяющейся призматической поверхностью нагружения. При кинематическом упрочнении шестиугольник сначала будет двигаться вправо по нормали к той стороне, на которой находится конец вектора нагружения. В момент, когда шестиугольник займет положение, показанное штриховой линией, конец вектора нагружения окажется в вершине, которая будет следовать по прямолинейному пути нагружения, увлекая за собою перемещающийся параллельно шестиугольник. Радиус-вектор s центра шестиугольника изображает в некотором масштабе пластическую деформацию, вызванную напряжением а при заданном радиальном пути нагружения. Конечно, это относится к случаю линейного упрочнения.  [c.557]

Как всегда, можно привести примеры крайних следствий из принятой аппроксимации, но во многих случаях результаты расчета по кусочно линейной теории достаточно близки к результатам теории с гладкой поверхностью нагружения, возможная погрешность окупается несравненной простотой.  [c.557]

На этой основе в предложенной теории удается учесть эво ЛЮЦИЮ поверхностей текучести и в ограниченной степени влияние деформаций на условия равновесия. Вышеупомянутая кусочно-линейная аппроксимация первых и использование линеаризованных уравнений равновесия (эффекты второго по-рядка ) для учета влияния последних представляются гипотезами, которые, несмотря нй свою ограниченность, не лишают достигнутые результаты прикладного значения. Естественно, что теоретический коэффициент запаса s (по разрушению вследствие неограниченного пластического течения) во многих случаях может оказываться бесконечным вследствие упрочнения или стабилизирующих геометрических эффектов. Следовательно, реалистическая оценка безопасности должна основываться (как это часто делается при конечных значениях s и в классической постановке) на определении в условиях приспособляемости тех значений (или хотя бы порядка величии), которые принимают локальные характеристики прежде всего наиболее существенные перемещения и пластические деформации в определяющих областях объекта. Однако эти значения зависят от истории нагружения, которая, как правило, неизвестна, за исключением лишь интервалов изменения нагрузок, Поэтому обращение к оценкам сверху представляется важным и часто неизбежным. В данной работе приведены некоторые процедуры получения верхних оценок, но их практическая ценность и относительные достоинства должны еще быть определены из опыта вычислений. Эта задача, как и дальнейшее развитие теории, подлежит рассмотрению в будущем. Связь с предшествовавшими трудами отмечается в тексте чаще всего тогда, когда из полученных новых результатов определяются частные случаи.  [c.76]


В сущности все методы построения предельных поверхностей слоистых композитов предполагают использование линейно упругого подхода при определении напряженного состояния материала. Из этого однозначно следует, что для слоя достижение предела текучести равносильно исчерпанию несущей способности. В результате расчетная диаграмма а(е) композита получается или линейной или кусочно линейной, если отдельные слои, составляющие композит, достигают предельного состояния еще в процессе нагружения, до разрушения композита в целом. Многие из практически используемых видов однонаправленных композитов в действительности деформируются нелинейно при действии касательных напряжений и напряжений, перпендикулярных направлению армирования. В результате и диаграмма деформирования слоистого композита в целом может оказаться нелинейной. Более того, отдельные слои композита могут обладать  [c.149]


Смотреть страницы где упоминается термин Кусочно линейные поверхности нагружения : [c.557]    [c.168]    [c.558]   
Смотреть главы в:

Механика деформируемого твердого тела  -> Кусочно линейные поверхности нагружения



ПОИСК



Поверхность нагружения



© 2025 Mash-xxl.info Реклама на сайте