Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Истечение жидкости из отверстий и насадок

Глава 6. ИСТЕЧЕНИЕ ЖИДКОСТИ ИЗ ОТВЕРСТИЙ И НАСАДОК  [c.60]

Мы рассматривали потоки, поперечное сечение которых во много раз меньше, чем длина потока. Поэтому в основе всех расчетов лежало определение потерь энергии на трение. При истечении жидкости из отверстий и насадок, которое происходит на очень коротких участках (потери на трение по длине потока при этом очень малы и общие потери энергии потока обусловливаются потерями на изменение скорости, т. е. местными) основными задачами являются определение скоростей, расходов и времени истечения жидкости.  [c.60]


О. т. рассматриваются в технич. задачах об истечении струй из отверстий и насадок сосудов, о водосливах, кавитационном обтекании тел (суперкавитирующие винты, гидродинамич. решетки, выступающие подводные части быстроходных судов), глиссировании и посадке на воду и т. д. Задачи об О. т. жидкости, вязкостью к-рой можно пренебречь, решаются в теории струй идеальной жидкости. Результаты этой теории обычно хорошо совпадают с опытом.  [c.571]

В разд. 1 справочника даны фундаментальные определения, краткое изложение понятий и законов механики жидкости и газа, механики двухфазных систем, а также методы применения их в инженерных расчетах. Специалисты теплоэнергетики и теплотехники найдут здесь тщательно отобранные сведения по методам расчета гидравлических сопротивлений элементов различных конструкций, расходов при истечении из отверстий и насадок, газодинамических процессов и т. д.  [c.7]

Рис. 7.4. Схема свободного истечения жидкости из отверстия в толе стенке цилиндрической формы (цилиндрический насадок) диаметро и длиной / в газообразную среду с давлением рг в сечении 2— 2 Рис. 7.4. Схема <a href="/info/25985">свободного истечения</a> жидкости из отверстия в толе <a href="/info/109672">стенке цилиндрической</a> формы (цилиндрический насадок) диаметро и длиной / в <a href="/info/126431">газообразную среду</a> с давлением рг в сечении 2— 2
Рассмотрим истечение жидкости из резервуара, когда к отверстию в его боковой стенке приставлен цилиндрический насадок (рис. 7.3, а). При входе в насадок струя жидкости вначале сужается, как и при истечении через отверстие, а затем расширяется, заполняя все сечение насадка, т. е. на выходе = о и е =1. Вокруг сжатого сечения, как и в местном сопротивлении при внезапном сужении потока, образуются водоворотные (застойные) зоны с пониженным давлением, в результате чего происходит подсасывание жидкости из резервуара, и скорость движения жидкости в сжатом сечении увеличивается [см. уравнение (7.1)]. Поэтому при одинаковом напоре расход жидкости через насадок будет больше, чем через отверстие.  [c.116]

Увеличение расхода Q при этом является следствием отсутствия сжатия струи на выходе из насадка. Кроме того, при безотрывном истечении на входе в насадок поток сжимается, а значит, в соответствии с законом Бернулли скорость движения жидкости увеличивается, а давление в этом месте уменьшается по сравнению с давлением среды, куда происходит истечение. Причем степень сжатия потока, а следовательно, и степень уменьшения давления в узком сечении потока тем больше, чем больше расчетный напор Яр. При этом на входной кромке отверстия создается больший перепад давления, чем при истечении жидкости через отверстие в тонкой стенке при одном и том же Н . В результате этого обеспечиваются дополнительный приток жидкости из бака в насадок и увеличение расхода Q.  [c.67]


Максимальной удельной кинетической энергией обладает струя жидкости, вытекающая из коноидального насадка. Большую кинетическую энергию имеют также струя, вытекающая из круглого отверстия в тонкой стенке, и струя, протекающая через конический сходящийся насадок. Несмотря на то что пропускная способность внешнего насадка значительно выше пропускной способности отверстия в тонкой стенке, кинетическая энергия струи жидкости, вытекающей через отверстие в тонкой стенке, несколько больше, чем у струи цилиндрического внешнего насадка. Насадки конические расходящиеся отличаются мини мальными значениями скорости и удельной кинетической энергии. Гидравлические сопротивления достигают наибольшей величины при истечении жидкости через конический расходящийся насадок, а наименьшей — через коноидальный. Рассмотренные гидравлические характеристики малых отверстий в тонкой стенке и насадков различных типов помогают ориентироваться при их выборе для практического применения при расчете и конструировании отдельных сооружений или устройств.  [c.160]

Теоретические и экспериментальные исследования показали, что струя, выходящая из отверстия с насадком в условиях плавного очертания входа в насадок и при условии, что давление на выходе из него не превышает критического (в случае истечения газа), постепенно расширяется в виде конуса и благодаря вязкости увлекает в движение окружающую ее жидкость. Вместе с тем между струей и жидкостью внешнего пространства происходит обмен масс, причем в процессе этого обмена струя захватывает несколько большую массу, так что в направлении движения струи ее масса несколько увеличивается.  [c.135]

К насадку в месте предполагаемого наи-большего сжатия струи присоединяется изогнутая стеклянная трубка, опуш,енная другим концом в открытый сосуд с жидкостью (рис. 142). Наблюдая за этой трубкой, можно увидеть, как по ней в насадок непрерывно засасывается жидкость, что, очевидно, возможно только при наличии разности давлений, т. е. вакуума в насадке. Наличием вакуума в насадке можно объяснить также и непонятное на первый взгляд увеличение расхода при истечении из насадка по сравнению с истечением из отверстия в тонкой стенке. Благодаря вакууму насадок работает как своеобразный насос, дополнительно подсасывая жидкость вот почему в этом случае, несмотря на увеличение потерь напора, расход жидкости увеличивается.  [c.201]

Струя жидкости, вытекающая через отверстие или насадок в газовую среду или в жидкость, с ней не смешивающуюся, испытывает действие массовых сил (например, инерции и тяжести), трения, поверхностного натяжения, а также сил давления, обусловленных турбулентным перемешиванием как в самой струе, так и в среде. Влияние каждой из действующих сил на характер движения струи и на ее последующее разрушение не одинаково для различных начальных условий истечения.  [c.346]

Внешним цилиндрическим насадком называется короткая трубка длиной, равной 2—6 диаметрам, без закругления входной кромки (рис. 4.4,а). На практике такой насадок часто получается в тех случаях, когда выполняют сверление в толстой стенке и не обрабатывают входную кромку (рис. 4.4,6). Истечение через такой насадок в газовую среду может происходить двояко. Схема течения, соответствующая первому режиму, показана на рис. 4.4,а, б. Струя после входа в насадок сжимается примерно так же, как и при истечении через отверстие в тонкой стенке. Затем, вследствие того что сжатая часть струи окружена завихренной жидкостью, струя постепенно расширяется до размеров отверстия и из насадка выходит полным сечением. Этот режим истечения называют безотрывным режимом.  [c.78]

Дополнительно надо иметь в виду еще следующее (рис. 10-15). Можно показать, что величина площади сжатого сечения зависит (при рассматриваемом турбулентном движении) только от очертания кромок а и вовсе не зависит от давления в области А. Поэтому ш/ в случае насадка и при истечении из отверстия в атмосферу должны быть одинаковы. Вместе с тем, соединяя сечение 1-1 и сечение С— С уравнением Бернулли (рис. 10-15), мы видим, что в этом случае получается как бы истечение жидкости не в атмосферу, а в среду вакуума (в среду пониженного давления), т.е. истечение при большем напоре (чем при истечении из отверстия). Такое положение, естественно, обусловливает увеличение скорости в сечении С-С (по сравнению со скоростью в сечении С —С, когда мы имеем истечение из отверстия). Поскольку расход Q = (0V, то легко видеть, что сохраняя площадь юс и увеличивая (в случае насадка) скорость в сечении С —С, мы и должны, применяя насадок, увеличить расход Q.  [c.393]


В конических расходящихся насадках струя жидкости при входе в насадок испытывает значительное сжатие, затем быстро расширяется и заполняет все сечение. Внешнего сжатия при выходе из насадка здесь нет, и, следовательно, коэффициент сжатия е = 1. Однако при 0>8° происходит отрыв жидкости от стенок, насадок перестает работать полным сечением и истечение происходит как из отверстия в тонкой стенке. Коэффициенты истечения в расходящихся насадках изменяются в зависимости от 0 в среднем (при 0<8°) ф = ц 0,45.  [c.183]

Режим истечения через внутренний насадок определяется напором и отношением длины насадка / к диаметру отверстия с1. При длине насадка />2,5 с жидкость заполняет все его выходное сечение коэффициент сжатия в этом сечении е=1, коэффициент скорости ф = 0,71. При / 1,5с/ насадок работает неполным сечением и жидкость вытекает из отверстия, не касаясь стенок насадка, что приводит к значительному уменьшению расхода ( х = 0,5).  [c.184]

В водоворотной зоне находятся жидкость и выделившиеся из нее пары и растворенные газы. Завихренная зона образуется в результате изгиба линий тока, вызванного условиями входа жидкости в отверстие. Струя заполняет все сечение насадка не сразу, а лишь на некотором расстоянии от входного отверстия. Зажатый в завихренной зоне воздух довольно быстро увлекается потоком, и на входном участке насадка образуется вакуум, величина которого зависит от скорости движения жидкости или по существу от напора. Вследствие разрежения (вакуума) жидкость подсасывается из резервуара скорость протекания жидкости в отверстии возрастает ввиду увеличения полного напора, слагающегося из напора над центром тяжести входного отверстия и величины вакуума в сжатом сечении. Вакуум, в свою очередь, несколько расширяет сжатое сечение. Увеличение скорости протекания жидкости через входное отверстие и увеличение площади сжатого сечения вызывают увеличение расхода через насадок по сравнению с истечением через отверстие в тонкой стенке. Однако наличие насадка ведет и к некоторым дополнительным потерям напора, что несколько снижает скорости в выходном сечении. Как будет показано далее, при сравнительно коротком насадке подсасывание жидкости в связи с образованием вакуума оказывает большее влияние на протекание жидкости, чем в какой-то мере возрастающие гидравлические сопротивления в насадке в результате расход жидкости через насадки увеличивается. При насадках длиной больше 40—50 диаметров эффект подсасывания не компенсирует возрастающие гидравлические потери по длине насадка, и расход жидкости через такой насадок оказывается равным или меньшим расхода через отверстие в тонкой стенке.  [c.143]

Движение жидкостей в каналах с переменным поперечным сечением, а) Простейшим примером течения в канале с переменным сечением является истечение жидкости из сосуда через насадок. Случай истечения без гидравлических потерь был рассмотрен нами в 5, гл. II. Напомним, что вследствие сжатия струи ее поперечное сечение обычно меньше поперечного сечения отверстия Р, а именно, оно равно а, где а есть коэффициент сжатия струи (при истечении через отверстие с острыми краями а и 0,61). Скорость в середине струи при истечении из сосуда, поперечное сечение которого велико по сравнению с поперечным сечением насадка, обычно очень точно равна Z2gh. Однако ближе к краям струи скорость вследствие трения притекающей жидкости о стенки насадка меньше указанной величины при истечении из насадка, изображенного на рис. 32, это уменьшение значительнее, чем при истечении через отверстие в стенке (рис. 31). Таким образом, средняя скорость истечения несколько меньше теоретической и может быть принята равной  [c.231]

Практически при истечении воды в атмосферу и 8,0 м начинается поступление воздуха через выходное сечение, жидкость частично или полностью отрывается от стенок, т.е. происходит срыв вакуума и переход к истечению из отверстия. Соответственно коэффициент расхода Ухменьшается и насадок теряет свои преимущества в пропускной способности по сравнению с отверстием в тонкой стенке.  [c.220]

Столь высокие значения коэффициента расхода при истечении из насадка можно объяснить при рассмотрении характерных особенностей истечения в этом случае. Поступающая в насадок струя сначала испытывает сжатие (рис. 6-8) подобно сжатию при истечении из отверстия, а вокруг сжатой струи образуется зона отжима (заштрихована на рисунке). Из зоны отжима воздух уносится потоком и в этой зоне понижается давление (образуется вакуугл, величина которого зависит от скорости движения или от напора). Понижение давления в сжатом сечении приводит к увеличению скорости в этом сечении. Но при этом появляются и некоторые дополнительные потери напора, наличие которых должно привести к уменьше нию скорости. В трубках небольшой длины влияние подсасывания жидкости вследствие понижения давления (образования вакуума) оказывает большее влияние на пропускную способность, чем добавочные сопротивления, и поэтому расход через внешний цилиндрический насадок увеличен по сравнению с расходом из малого отверстия.  [c.142]

Одним из таких струеформирующих устройств является насадок цилиндрической формы, схема которого представлена на рис. 8.7а. Такой насадок имеет длину /- (3,5 - 4,0)йо- Истечение через него равносильно истечению через отверстие в толстой стенке и потому имеет ряд особенностей. При острых входных кромках на расстоянии примерно равном внутреннему диаметру насадка йо струя сужается с коэффициентом сжатия ЕвзГ 0,64. Пространство между струйным потоком и стенками насадка заполняется жидкостью, находящейся в вихреобразном движении, аналогичном тому, которое наблюдается в застойных зонах местных сопротивлений в напорных трубопроводах. Пройдя это сечение, струя начинает постепенно расширяться, заполняя к выходу все сечение насадка. Поэтому коэффициент сжатия на выходе из насадка становится равным 1. Образование застойной зоны приводит к заметным потерям энергии, поэтому коэффициент скорости <р для такого насадка (равный коэффициенту расхода ц) составляет 0,82. В данном случае наряду с уменьшением средней скорости в сравнении с истечением из отверстия в тонкой стенке имеет место увеличение расхода жидкости. Это значит, что в самом узком сечении потока в насадке средняя скорость жидкости больше, чем при истечении из отверстия в тонкой стенке. Подобный эффект связан с возникновением разряжения в застойной зоне, величина которого при расчете коэффициента потерь по формуле (6.44) с учетом вл" 0,64 и -0,82, достигает 0,75 Н.  [c.141]


Состав выходящей пульпы и характер ее истечения из отверстий, насадок и стояков зависят от ситового состава адсорбента, физических свойств жидкости, а также гидродинамических усло-ви11 движения (высота панора, скорость схода и др.).  [c.130]

Еще большего увеличения расхода жидкости можно достичь при истечении свободного пото через конический расходящийся насадок с углом конусности 5 - 7 . На выходе из такого насадка площадь сечения струи больше площади входного отверстия < > 1). Такие насадки применяют в качестве отсасывающих труб на гидроэлектростанциях или сливных устройств на гидротехнических сооружениях, где требуется получить большой расход при ограниченных размерах отверстия. Для выходного сечения такого насадка коэффициенты расхода и скорости (Ц=<р) принимают равными 0,48.  [c.142]


Смотреть страницы где упоминается термин Истечение жидкости из отверстий и насадок : [c.389]    [c.337]    [c.200]    [c.231]    [c.181]    [c.153]    [c.634]   
Смотреть главы в:

Гидравлика, основы сельскохозяйственного водоснабжения и канализации  -> Истечение жидкости из отверстий и насадок

Гидравлика, водоснабжение и канализация  -> Истечение жидкости из отверстий и насадок



ПОИСК



Истечение

Истечение жидкостей

Истечение жидкостей черва отверстия и насадки

Истечение жидкости из насадко

Истечение жидкости из насадко из отверстия

Истечение жидкости из насадко из отверстия

Истечение жидкости из отверстий. Насадки, короткие трубы и свободные струи Истечение жидкости из малых отверстий в тонкой стенке при постоянном напоре

Истечение жидкости чере отверстия и насадки

Истечение жидкости через отверстие и насадки при постоянном напоре

Истечение жидкости через отверстия и насадки

Истечение жидкости через отверстия и насадки Классификация отверстий и основные характеристики истечений

Истечение жидкости через отверстия и насадки при переменном напоре

Истечение жидкости через отверстия, насадки и водосливы

Истечение жидкости через отверстия, насадки и дроссели при постоянном напоре

Истечение жидкости через отверстия, насадки и изпод щита. Струи

Истечение жидкости через отверстия, насадки и короткие трубы

Истечение жидкости через отверстия, насадки, дроссели и клапаны

Истечение из отверстий

Истечение капельных жидкостей из сосудов через отверстия и насадки

Истечение насадки

Лабораторная работа 5. Исследование истечения жидкости через различные отверстия и насадки

Местные гидравлические сопротивления. Истечение жидкости через отверстия и насадки

Насадка

Насадок Борда. Истечение жидкости из прямоугольного отверстия. Коэфициент сжатия. Удар струи о перпендикулярную и наклонную пластинку. Вычисление сопротивления. Задача Бобылева

Насадок, истечение жидкости

Отверстия — Истечение жидкостей



© 2025 Mash-xxl.info Реклама на сайте