Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы гидродинамики

ГЛАВА VI ЭЛЕМЕНТЫ ГИДРОДИНАМИКИ  [c.85]

Очевидно, что соотношения элементов (4-17) могут быть иными, чем те, что приведены з (4-18) — (4-26). Обоснованием принятого порядка служит лишь общепризнанность критериев Но, Fr, Eu, Re, которыми характеризует гидродинамику однородных жидкостей, и ряд соображений, которые рассматриваются далее. Следует подчеркнуть, что число полученных критериев т строго определенно если число членов уравнений п, то [Л. 179] tn = n—1. Так, из уравнения движения, содержащего  [c.119]


ГИДРОДИНАМИКА И ТЕПЛООБМЕН В ПОРИСТЫХ ЭЛЕМЕНТАХ КОНСТРУКЦИЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ  [c.2]

О. Коши при установлении понятия напряжения пользовался понятием давления на плоскость, знакомым ему из гидродинамики. Он ввел гипотезу о том, что это давление уже не является нормальным к плоскости, на которую оно действует. Полное давление на бесконечно малый элемент плоскости, взятой внутри тела, определялось О. Коши как результирующая всех воздействий, оказываемых молекулами, находящимися по одну сторону плоскости, на молекулы, лежащие по другую ее сторону.  [c.27]

Прежде всего, однако, возникает вопрос о более точном определении самого понятия скорости и . В релятивистской механике всякий поток энергии неизбежно связан также и с потоком массы. Поэтому при наличии, например, теплового потока определение скорости по потоку массы (как в нерелятивистской гидродинамике) теряет непосредственный смысл. Мы определим здесь скорость условием, чтобы в собственной системе отсчета каждого данного элемента жидкости его импульс был равен нулю, а его энергия выражалась через другие термодинамические величины теми же формулами, как и при отсутствии диссипативных процессов. Это значит, что в указанной системе отсчета должны обращаться в нуль компоненты тоо и тензора т, поскольку в этой системе и = О, то имеем в ней ( а потому и в любой другой системе) тензорное соотношение  [c.703]

Обычное термодинамическое определение давления как средней силы, действующей на единичную площадку, относится к неподвижной среде. В обычной гидродинамике тем не менее не возникает вопроса об определении понятия давления (если не учитываются диссипативные процессы), так как всегда можно перейти к системе координат, в которой данный элемент объема жидкости покоится. В гидродинамике же сверхтекучей жидкости надлежащим выбором системы координат можно исключить лишь одно из двух одновременно происходящих движений, и потому обычное определение давления вообще не может быть применено.  [c.716]

В части 2 рассмотрены гиперзвуковые течения,, элементы магнитной гидродинамики, течения разреженных газов, а также теории крыла и решеток крыловых профилей. В пятое издание (4-е изд.— 1976 г.) включены материалы по численным методам, сверхзвуковой газовой динамике, новые сведения о струях и спутном потоке.  [c.2]

Такая задача встречается в корабельной гидродинамике, например, при нестационарных режимах движения крыльевой системы быстроходного судна (колебания на волнении, разгон, торможение). В ряде случаев отдельные элементы системы стойки, крылья—находятся в режимах кавитации (или вентиляции), при которых с течением времени изменяются скорость набегающего потока, длина каверны, а также гидродинамические силы  [c.169]


Механикой называют область науки, цель которой — изучение движения и напряженного состояния элементов машин, строительных конструкций, сплошных сред и т. п. под действием приложенных к ним сил. Современное состояние этой науки достаточно полно определяется ее основными составными частями общей механикой, к которой относят механику материальных точек, тел и их систем, сплошных и дискретных сред, колебания механических систем, теорию механизмов и машин и др. механикой деформируемых твердых тел, к которой относят теории упругости, пластичности, ползучести, теорию, стержней, ферм, оболочек и др. механикой жидкости и газа с разделами газо- и аэродинамика, магнитная гидродинамика и др. комплексными и специальными разделами механики, в частности биомеханикой, теорией прочности конструкций и материалов, экспериментальными методами исследования свойств материалов и др.  [c.4]

Таким образом, шаровая форма твэлов оказывается весьма перспективной как для реакторов ВГР, так и реакторов-размно-жителей БГР. Однако реализация преимуществ шаровой формы топливных элементов наталкивается на серьезные затруднения, связанные, в первую очередь, с недостаточными сведениями в области гидродинамики, теплообмена и структуры подвижных шаровых засыпок при высоких теплонапряженностях активной зоны. Не менее важными являются экспериментальные сведения о распределении газовых потоков, возможности образования застойных зон как на поверхности шарового твэла, так и в макрополости, о сохранении стабильности структуры шаровой засыпки в случае подвижной активной зоны. Для правильного выбора размера шаровых твэлов реактора ВГР и микротоплив-ных частиц реактора БГР необходимо располагать методикой оптимизационных исследований. Решению некоторых из этих вопросов и посвящен предлагаемый материал.  [c.8]

Поскольку для вихревого режима течения невозможно применить гидродинамическую теорию теплообмена, то обычно расчетные зависимости в области гидродинамики и теплообмена получают на основе обобщения экспериментальных данных. Экспериментальные исследования гидродинамики и теплообмена в активных зонах с шаровыми твэлами реакторов FP оеу-ш,ествить весьма трудно, а на стадии проектирования просто и невозмфкно, поэтому обычно используют теорию подобия, которая позволяет установить, от каких безоазмерных параметров зависит гидродинамическое сопротивление при обтекании газом тепловыделяющих элементов и его нагрев за счет теплоотдачи от поверхности твэлов.  [c.47]

Повышение температуры в аппарате с псевдоожи-женным слоем двояко сказывается на интенсивности внешнего теплообмена. Во-первых, происходит изменение теплофизических свойств дисперсного материала и ожи-жающего агента. Соответствующие изменения гидродинамики и теплообмена описаны в гл. 2, 3. Во-вторых, усложняется механизм передачи энергии — существенным становится радиационный перенос, роль которого в низкотемпературных системах пренебрежимо- мала. Быстрое возрастание вклада излучения в процесс теплообмена объясняется характером зависимости количества переносимой энергии от температуры. В случае теплопроводности и конвекции перенос энергии между двумя элементами рассматриваемого объема пропорционален разности их температур приблизительно в первой степени (с учетом нелинейности). Перенос энергии излучением в тех же условиях будет пропорционален разности четвертых или пятых степеней (с учетом нелинейности) абсолютных температур [125].  [c.130]

Изучение движения жидкостей (и газов) представляет собой содержание гидродинамики. Поскольку явления, рассматриваемые в гидродинамике, имеют макроскопический характер, то в гидродинамике жидкость ) рассматривается как сплошная среда. Это значит, что всякий малый элемент объема жидкости считается все-таки настолько большим, что содержит еш,е очень большое число молекул. Соответственно этому, когда мы будем говорить о бесконечно малых элементах объема, то всегда при этом будет подразумеваться физически бесконечно малый объем, т. е. объем, достаточно малый по сравнению с объемом тела, но большой по сравнению с межмолекулярнымн расстояниями. В таком же смысле надо понимать в гидродинамике выражения жидкая частица , точка жидкости . Если, например, говорят о смещении некоторой частицы жидкости, то при этом идет речь не о смеш,ении отдельной молекулы, а о смещении целого элемента объема, содержащего много молекул, но рассматриваемого в гидродинамике как точка.  [c.13]


Устройства для определения Ви основаны на применении двух бетамеров, работающих в одинаковых условиях. Поверхность массообменной секции одного из них должна быть покрыта водой или смоченным эталонным капиллярнопористым телом, а второго — слоем испытуемого продукта. Для определения в условиях свободной и вынужденной конвекции второй бетамер снабжен специальными теплометрическими элементами для контроля равномерности картины гидродинамики набегающего на оба бетамера потока воздуха.  [c.86]


Смотреть страницы где упоминается термин Элементы гидродинамики : [c.58]    [c.60]    [c.62]    [c.66]    [c.68]    [c.70]    [c.72]    [c.74]    [c.76]    [c.78]    [c.80]    [c.82]    [c.84]    [c.86]    [c.88]    [c.90]    [c.92]    [c.94]    [c.96]    [c.98]    [c.100]    [c.102]    [c.104]    [c.106]    [c.108]    [c.110]    [c.112]    [c.239]    [c.389]    [c.389]    [c.391]    [c.2]    [c.362]   
Смотреть главы в:

Прикладная газовая динамика. Ч.1  -> Элементы гидродинамики

Машиностроение Энциклопедический справочник Раздел 1 Том 1  -> Элементы гидродинамики

Механика  -> Элементы гидродинамики



ПОИСК



Гидродинамика

Глава двадцать четвертая. Элементы магнитной гидродинамики

Метод граничных элементов в задаче гидродинамики со свободной границей

Методика теплового расчета отдельных элементов котельного агрегата — Гидродинамика пароводяной части котельного агрегата

ЭЛЕМЕНТЫ ГИДРАВЛИКИ И НАСОСЫ Раздел первый Гидростатика, гидродинамика и насосы

Элементы гидравлики и насосы Раздел пятый. Гидростатика, гидродинамика и насосы Основные понятия



© 2025 Mash-xxl.info Реклама на сайте