Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Построение линий пересечения поверхностей способом концентрических сфер

Построение линий пересечения поверхностей способом концентрических сфер  [c.185]

Ниже приведены примеры построения линий пересечения поверхностей вращения с применением способа концентрических сфер (рис. 358 и 359). Линия пересечения, являющаяся здесь  [c.298]

Оси поверхностей вращения пересекаются (рис. 140,6). Для построения линии пересечения некоторых поверхностей вращения, как в данном случае, нецелесообразно использовать вспомогательные секущие плоскости. Они не могут дать вспомогательные линии сечения, которые проецировались бы графически простыми линиями. Поэтому для построения линии пересечения поверхностей вращения с пересекающимися осями и общей плоскостью симметрии следует применить так называемый способ вспомогательных концентрических сфер.  [c.104]


Рассмотрим пример построения линии пересечения двух поверхностей вращения с общей плоскостью симметрии одна из поверхностей — сфера (рис. 334). Этот пример может быть решен уже известными способами — пользуясь вспомогательными секущими плоскостями уровня или способом концентрических сфер. Здесь ось поверхности вращения и центр сферы располагаются в одной фронтальной плоскости.  [c.228]

При построении линии пересечения двух поверхностей способом вспомогательных сфер возможны два случая. В одном из них пользуются сферами, проведенными из одного, общего для всех сфер центра, а в другом — сферами, проведенными из разных центров. В первом случае имеем способ концентрических, сфер, во втором- способ эксцентрических сфер.  [c.189]

Отмечаем точки видимости А и В в пересечении контура поверхности тора с контуром конической поверхности. Для построения случайных точек здесь нельзя воспользоваться способом концентрических сфер, так как, хотя обе поверхности и являются поверхностями вращения, но их оси и I не пересекаются. Способом же эксцентрических сфер, центры которых находятся в различных точках оси конической поверхности, можно найти сколько угодно случайных точек линии пересечения.  [c.193]

Итак, способ концентрических сфер применяют для построения линии пересечения двух поверхностей вращения с пересекающимися осями. В силу особенностей своего расположения поверхности Ф и имеют общую плоскость симметрии, которая обычно является плоскостью уровня. Отсюда следует, что линия пересечения поверхностей т будет симметрична относительно общей плоскости симметрии и экстремальные точки линии т можно построить точно.  [c.126]

Линия пересечения цилиндрических поверхностей на эпюре (рис. 193, а) построена способом концентрических сфер. А для построения линии пересечения в аксонометрической проекции удобно воспользоваться посредниками -фронтальными плоскостями уровня (типа у), которые параллельны осям вращения цилиндров.  [c.219]

Способ концентрических сфер. Проекции линии пересечения поверхностей вращения с пересекающимися осями, параллельными какой-либо плоскости проекций, удобно строить способом концентрических сфер. Сущность этого способа показана на примере построения линий взаимного пересечения поверхностей конуса и цилиндра (рис. 161). Линия пересечения симметрична относительно плоскости, определяемой осями поверхностей, поэтому фронтальные проекции видимой и невидимой ее частей сливаются в одну линию. Построение начинаем с определения фронтальных проекций V и 2 высшей и низшей точек линии пересечения (на пересечении очерков поверхностей) и их горизонтальных проекций 1 и 2. Проекции остальных точек находим посредством вспомогательных сфер с центром в точке Ох (оц о ) пересечения ос 158  [c.158]


Построить линии пересечения поверхностей, используя способ секущих плоскостей-посредников и концентрических сфер. Линии построения сохранить.  [c.1]

Вспомогательпые секущие концентрические сферические посредники. Этот способ применяют для построения линии пересечения двух поверхностей вращения общего вида с пересекающимися осями (с общей плоскостью симметрии). Каждая из этих поверхностей имеет семейство окружностей, по которым она пересекается концентрическими сферами.  [c.227]

Способ эксцентрических сфер может быть испольэован для построения линии пересечения двух поверхностей, имеющих общую плоскость симметрии. При этом каждая поверхность должна иметь семейство окружностей. Как и в способе концентрических сфер, плоскость симметрии должна быть параллельна одной из плоскостей проекции. Сущность способа легко уяснить из следующих примеров.  [c.160]

Выбор вспомогательных секуищх поверхностей. Заданы две поверхности вращения. Оси этих поверхностей пересекаются и параллельны фронтальной плоскости проекции. Следовательно, для построения линии их пересечения можно применить способ вспомогательных концентрических сфер. Центры этих сфер должны быть в точке О пересечения осей вращения заданных поверхностей.  [c.74]


Смотреть главы в:

Инженерная графика  -> Построение линий пересечения поверхностей способом концентрических сфер

Инженерная графика  -> Построение линий пересечения поверхностей способом концентрических сфер



ПОИСК



Концентрические сферы

Линии пересечения

Линии поверхностей

Линия концентрическая

Пересечение

Пересечение линии с линией (I П т)

Пересечение линии с поверхностью

Пересечение поверхностей

Пересечение поверхности с поверхностью (аП

Поверхности Построение —Способы

Построение линий

Построение линий пересечения поверхностей

Построение поверхности

Способ концентрических сфер

Способы построения линий

Сфера



© 2025 Mash-xxl.info Реклама на сайте