Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Траектория к Урану

Траектория станции прошла на расстоянии 18 260 км от ближайшего к Урану спутника — Миранды. Положение станции на расстоянии почти  [c.99]

Траектории полетов к Сатурну, или Урану, или Нептуну через Юпитер наименее чувствительны к начальным ошибкам в сезон 1979 г.  [c.408]

Основную часть межпланетной траектории занимает гелиоцентрический участок, на котором КА обычно перемещается по эллиптической траектории. При расчете гелиоцентрического участка можно пренебречь размерами сфер действия планет по сравнению с их расстоянием до Солнца, т, е, принять, что сферы действия планет стянуты в точки, которые совпадают с центрами масс планет, Действительно, радиусы сфер действия Марса, Земли и Венеры составляют меньше 1 % от расстояния до Солнца. Однако, для планет-гигантов (Юпитер, Сатурн, Уран, Нептун) радиусы сфер действия составляют уже несколько процентов от расстояния до Солнца. Поэтому в некоторых задачах для повышения точности приближенных расчетов приходится учитывать размеры сфер действия при  [c.290]


Интересны, в частности, результаты теоретических расчетов, выполненных сотрудниками Вычислительного центра Академии Наук СССР и доложенные ими на Всесоюзном съезде по теоретической и прикладной механике в 1964 году. По этим расчетам солнечно-парусные космические корабли, двигаясь по разработанным авторами оптимальным траекториям, могли бы достичь Марса за 122 суток, Венеры—за 164 суток, Меркурия—за 200 суток. Полет к Юпитеру должен длиться 6,6 года, к Урану—49 лет. Близкие данные получены позднее и американскими учеными в частности, полет к Марсу космического зонда весом 91 килограмм с помощью паруса площадью 46 м должен потребовать, по этим данным, 135 суток.  [c.694]

В общем случае интегральные кривые, описываемые интегралом уран-нения (1.1.4), не однозначно соответствуют фазовым траекториям, однако мы в дальнейшем, интересуясь в первую очередь формой этих кривых, буде.м считать, что уравнение (1.1.4) дает семейство фазовых траекторий, однозначное определение которых требует некоторого дополнительного рассмотрения с уче--и чдлы1Я]Г "уСТОИи и своД изучаемой системы.  [c.17]

Результаiь исследования чувствительности требуемой начальной скорости показали, что наилучшей датой запуска космического аппарата к Сатурну с попутным облетом Юпитера является 1979 г. и что запуски к Урану и Нептуну с облетом Юпитера также лучше всего осуш,еств-лять в 1979 г. Многие из этих траекторий после пролета планеты назначения иногда выходят за пределы солнечной системы. Оптимальная возможность запуска аппарата к Плутону с облетом Юпитера наступает несколько раньше — в  [c.19]

На границе сферы действия величина гелиоцентрической скорости выхода аппарата может существенно превысить значение Двигаясь по новой траектории, аппарат может достичь следующей планеты. Например, при полете американской станции Нионер-11 к Сатурну был использован гравитационный удар в поле тяготения Юпитера. Вояджер-2 разгоняли по очереди Юпитер, Сатурн и Уран. Нолет  [c.161]

На границе сферы действия величина гелиоцентрической скорости выхода аппарата может существенно превысить значение Двигаясь по новой траектории, аппарат может достичь следующей планеты. Например, при полете американской станции Пионер-11 к Сатурну был использован гравитационный удар в поле тяготения Юпитера. Вояджер-2 разгоняли по очереди Юпитер, Сатурн и Уран. Полет к Урану по гомановской траектории продолжался бы 16 лет, а к Нептуну — 30 лет. Подходящая для такого разгона аппарата конфигурация внешних планет ожидается в 2155 г. цукнеп  [c.107]


Гомановский перелет к Юпитеру, начинающийся при скорости 14 км/с, продолжается без трех месяцев 3 года, а параболический более года. Минимальная начальная скорость достижения Сатурна всего лишь на 1 км/с превышает соответствующую величину для Юпитера, но время перелета составляет уже 6 лет. По параболической же траектории Сатурн может быть достигнут за 2,5 года. Все это более или менее терпимо. Однако с остальными планетами группы Юпитера дело обстоит гораздо хуже. Полеты к Урану, Нептуну, Плутону требуют мало отличающихся минимальных скоростей, так как они уже близки к третьей космической. Но продолжительности полетов, как видно из табл. 6 и 7, колоссальны. Полет до Плутона (при его среднем расстоянии) по параболической траектории продолжается более 19 лет 21 января 1979 г. Плутон, двигаясь по своей достаточно вьггянутой орбите, оказался внутри почти круговой орбиты Нептуна и снова окажется дальше от Солнца, чем Нептун, только в марте 1999 г. <он достигнет перигелия в 1989 г), так что по-  [c.403]

Примеры последовательного облета небесных тел. Обсудим наиболее интересные примеры реализации межпланетных траекторий с последовательным облетом нескольких небесных тел. 20 августа 1977 года был запущен американский КА Вояджер-2 но маршруту Земля — Юпитер — Сатурн — Уран — Нептун. Такую траекторию часто называют Гранд тур (Grand Tour— Великое путешествие ). Основные цели запуска включали исследование атмосфер Юпитера и Сатурна, Большого красного пятна Юпитера, колец Сатурна, гравитационных нолей Юпитера и Сатурна, некоторых характеристик их спутников, а также планетной системы Урана [82]. Благоприятное расположение планет для реализации подобной траектории повторится только в 2154 году.  [c.321]

Быстрые перелеты во внешние области солнечной системы. Из всех профилей, изображенных на рис. 6.50, последние два 14 и 15), представляющие собой траектории кеплерова движения, в основном предназначены для полетов во внешние районы солнечной системы. По всей вероятности, такие баллистические траектории больше подходят для полетов автоматизированных зондирующих ракет к Юпитеру и Сатурну (задачи 4-й группы), чем для полетов человека в необъятные глубины внешней части солнечной системы. Так как полет по траекториям профиля О требует колоссальных затрат времени, как это видно из рис. 6.43, в данном случае желательно, чтобы переходная гелиоцентрическая траектория была почти параболической или даже гиперболической. На рис. 6.58 представлена зависимость времени перелета от начальной гелиоцентрической скорости (взятой по отношению к величине круговой скорости на орбите Земли) при одностороннем полете к планетам юпитеровой группы. Кружки с точками в центре, находящиеся в левой части графика, соответствуют полетам к Юпитеру, Сатурну и Урану по минимальным траекториям. Наиболее характерной особенностью этих графиков является резкое уменьшение времени перелета при возрастании начальной скорости до параболической. Выход на параболическую траекторию требует добавления к круговой орбитальной скорости на орбите Земли, равной 97 700 фут/сек, еще около 40 ООО фут/сек, это значит, что скорость после выхода с заданной спутниковой орбиты высотой 300 морских миль должна быть равной примерно 53 100 фут/сек, т. е. требуемое приращение скорости должно составить 53 100—24 900 = 28 200 фут/сек. Из графика на рис. 6.42 видно, что для профиля О начальный прирост скорости при полете к Юпитеру равен примерно 21 500 фут/сек, при полете к Сатурну —27 ООО фут/сек и к Урану — 25 ООО фут/сек. Поэтому добавочная ступень, обеспечивающая прирост Лу = 6700 фут/сек, могла бы уменьшить время перелета к Юпитеру с 2,9 года до 2,1 года при приросте Аг = 3200 фут/сек — время перелета к Сатурну с 6 лет до 2,7 года при приросте  [c.227]


Смотреть страницы где упоминается термин Траектория к Урану : [c.18]    [c.19]    [c.162]    [c.515]    [c.409]   
Космическая техника (1964) -- [ c.228 ]



ПОИСК



U03+ ион уранила

Траектория

Траектория е-траектория

Уран

Уранне( ия



© 2025 Mash-xxl.info Реклама на сайте