Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы демпфирования с временным запаздыванием

На рис. 15.6 показаны корневые годографы для обратных связей по углу и по угловой скорости тангажа с запаздыванием. Механические системы стабилизации вводят такое запаздывание, обычно составляющ,ее около 1 с, что соответствует введению дополнительного полюса разомкнутой системы в левой полуплоскости. Вообще введение запаздывания ухудшает характеристики управляемости. При довольно большом запаздывании сигнала угла колебательное движение уже нельзя стабилизировать, а запаздывание сигнала угловой скорости ограничивает возможное демпфирование для действительного корня. Если же полюс, соответствующий запаздыванию, значительно больше действительного корня вертолета по модулю, то он мало влияет на корневой годограф. В частности, запаздывание сигнала угла и угловой скорости приемлемо до тех пор, пока постоянная времени форсирования больше постоянной времени запаздывания (полюс, соответствующий запаздыванию, должен находиться слева от нуля, соответствующего форсированию, и предпочтительно слева от действительного корня вертолета). Обратная связь по угловой скорости с запаздыванием (/s+1) 0is = =представляет интерес, поскольку существуют механические системы, реализующие такое управление (разд. 15.6). Она в основном подобна обратной связи по угловой скорости. Хотя обратная связь по угловой скорости, в том числе и с запаздыванием, не дает устойчивой замкнутой системы, она определенно улучшает динамику вертолета. При больших коэффициентах усиления колебательное движение может быть устойчивым даже при обратной связи по угловой скорости с запаздыванием, но этот случай не имеет практического значения.  [c.727]


Системы демпфирования с временным запаздыванием 17  [c.246]

Вертолет с бесшарнирным несущим винтом имеет большее демпфирование по тангажу и менее неустойчивое колебательное движение, чем вертолет с шарнирным винтом. С учетом более высокой эффективности управления задача пилотирования вертолета упрощается. Однако для обеспечения устойчивости все же требуется замыкание контура управления, которое осуществляет летчик или автоматическая система. Зная полюсы и нули вертолета, можно получить корневые годографы для различных обратных связей. Корневые годографы для вертолета с бесшарнирным винтом или с шарнирным, имеющим относ ГШ, подобны годографам, приведенным в предыдущем разделе, однако количественные различия в корнях существенно влияют на требуемые коэффициенты усиления и постоянные времени форсирования и запаздывания обратных связей. При существенно большем демпфировании обратная связь только по углу тангажа достаточна для обеспечения устойчивости колебательного движения, однако она неудовлетворительна при наличии любого существенного запаздывания. Таким образом, для удовлетворительных характеристик замкнутой системы управления вновь требуется обратная связь по углу и угловой скорости, но с меньшими постоянной времени форсирования и коэффициентом усиления (из-за повышенных демпфирования и эффективности управления), что упрощает задачу пилотирования. Нуль форсирования должен лежать справа от действительного корня  [c.729]

Приведенный здесь анализ динамики полета вертолета основан на использовании низкочастотной модели несущего винта. При такой аппроксимации получается система с шестью степенями свободы твердого тела, причем влияние несущего винта проявляется в форме производных устойчивости. Для анализа, а часто и для численных решений удобнее система более низкого порядка. Низкочастотная модель несущего винта в целом достаточно хороша для анализа динамики полета. Она согласуется с очень низкими частотами движения вертолета как твердого тела, что было показано численными примерами для корней, приведенными в предыдущих разделах. Оправданием для использования низкочастотной модели служит быстрая перестройка махового движения лопастей (см. разд. 12.1.3). Небольшое запаздывание объясняется мощным демпфированием махового движения лопасти. В разд. 12.1 низкочастотная модель была получена непосредственно из дифференциальных уравнений махового движения. В невращающейся системе координат были опущены все производные по времени от угла взмаха, так что уравнения свелись к квазистатической реакции махового движения на отклонения управления, перемещения вала и порывы ветра.  [c.774]


Недавно Дели и Кроссман [22 ] опубликовали экспериментальные данные отслеживания человеком-оператором суммы пяти синусоид, когда собственная частота и коэффициент демпфирования управляемой системы второго порядка Ус изменялись синусоидально на частотах 0,01—0,05 Гц. Они использовали гаусовую плотность распределения для усреднения как по времени, так и по частоте такое усреднение они назвали преобразованием Габора. Из этих данных они сделали вывод, что изменение параметров человека-оператора происходят в форме компенсационного слежения за изменениями параметра Ус с временной задержкой в 2,8 с и с запаздыванием первого порядка, имеющим постоянную времени  [c.276]


Смотреть страницы где упоминается термин Системы демпфирования с временным запаздыванием : [c.17]    [c.72]   
Магнитные системы управления космическими летательными аппаратами (1975) -- [ c.17 ]



ПОИСК



Демпфирование

Запаздывание

Запаздывание, системы с запаздыванием

Ось временная

Системы демпфирования с временным

Системы с запаздыванием



© 2025 Mash-xxl.info Реклама на сайте