Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Окрестность, в которой чувствуется

Иными словами, в случае минимума существует такая окрест ность 2п измерений точки М, что во всякой ее точке Р, отличной от Ml имеет место предыдущее неравенство. Для краткости эту окрестность точки М мы будем называть окрестностью, в которой чувствуется минимум".  [c.354]

S, с центром в уИ и радиусом вся была внутри окрестности точки М, в которой чувствуется действительный минимум функции Н, то этому е можно в силу замечаний п. 3 поставить в соответствие такое число jj., что для всех точек Q, лежащих на гиперсфере будем иметь  [c.356]


Окрестность, в которой чувствуется минимум 354 Оппозиция 203 Опыт Фуко 161, 162 Орбита 87  [c.429]

В обычном газе при достаточно большом г частица Q совсем не чувствовала бы влияния частицы Р] ее потенциальная энергия определялась бы одним или двумя ближайншын соседями. В плазме благодаря далънодействующему характеру кулоновских сил ситуация совершенно иная. Даже на больших расстояниях частица Q все еще чувствует слабое влияние частицы Р, которым нельзя пренебрегать, С другой стороны, на этих расстояниях между Р и Q имеется большое число частиц, каждая из которых оказывает влияние на Q. Следовательно, потенциальная энергия частицы Q определяется ее слабым взаимодействием с очень большим числом частиц. Таким образом, потенциальная энергия представляет собой коллективный эффект, который явно зависит от пространственного распределения частиц вокруг любой данной частицы. С дрзггой стороны, пространственное распределение зависит от потенциальной энергии если взаимодействие носит характер отталкивания, локальная плотность частиц в окрестности данной частицы будет меньше средней плотности числа частиц п во всей системе. Следовательно, потенциальная знергия и пространственное распределение тесно связаны и должны определяться совместно это является характерным свойством самосогласованного поля.  [c.246]

Физические основы. Взаимодействие крупномасштабной турбулентности с обтекаемым телом связано с дальнодействием сил давления. Когда турбулентный поток приближается к стенке, турбулентность чувствует это приближение и начинает изменяться. Вследствие этого при Ье 6 вблизи поверхности обтекаемого тела возникают как бы два пограничных слоя обычный вязкий и внешний невязкий . В вязком пограничном слое толш,иной 6 поле скорости завихренно. Во внешнем невязком пограничном слое толш,иной А оно потенциально, однако здесь изменяются характеристики турбулентности и, в частности, турбулентная вязкость. При построении моделей турбулентности это дальнодействие формально проявляется в моментных уравнениях через члены типа р и -) и р ди дх ). Пульсации давления в несжимаемой жидкости удовлетворяют уравнению Пуассона, решение которого определяется всей областью течения. Отсюда формально и возникает эффект дальнодействия. В [2] предпринята одна из первых попыток учесть эти эффекты при построении двухпараметрической модели турбулентности и показана необходимость введения в модельные уравнения расстояния до стенки. Тем самым в модель вводились эффекты не локальности, когда в малой окрестности точки решение модельных уравнений явно зависит от присутствия стенки вдали от нее. Многие современные модели турбулентности также используют понятие расстояния до стенки. Однако неясно, насколько правильно модельные уравнения такого типа могут описать внешний невязкий пограничный слой.  [c.456]


С, В которую попадает первая характеристика, отраженная от поверхности тангенциального разрыва. Правее точки С теченпе в пристеночном слое чувствует наличие внутреннего слоя. Возрастание давления связано с тем, что нри одном и том же угле поворота потока в течении Прандтля — Мейера давление в потоке с большим "У уменьшается сильнее, чем в истоке с меньшим -у. При относительно больших толш,инах пристеночного слоя влияние внутреннего слоя ощущается в основном правее точки D. В точке D производная давления терпит разрыв и начинает изменяться более интенсивно, а давлепие приближается к давлению в однослойном течении, поатому начиная с точки D течение в пристеночном слое определяется в основном внутренним слоем. До точки D возмущения, вносимые внутренним слоем, ослабляются волной разрежения, исходящей из точки А. При малых толщинах пристеночного слоя влияние внутреннего слоя сказывается в неносредственной окрестности угловой точки. Давление в пристеночном слое стремится сравняться с давлением во внутреннем слое, а так как последнее (нри повороте на один и тот же угол) больше, то происходит возрастание давления. Естественно, что по мере уменьшения толщины слоя различие между статическими давлениями в одпослопном и двухслойном течениях па степке сопла уменьшается, однако при этом число Маха в этих течениях могут существенно различаться за счет различия в показателе адиабаты. Отметим, что возрастание давления при обтекании угловой точки имеет место лишь в случае, когда показатель адиабаты в пристеночном слое больше показателя адиабаты в ядре потока. Как показывают расчеты, возрастания давления не наблюдается, если контур сопла в окрестности угловой точки скруглить с помощью окружности радиуса — 0,5)г .  [c.192]


Смотреть страницы где упоминается термин Окрестность, в которой чувствуется : [c.356]   
Курс теоретической механики Том 2 Часть 1 (1951) -- [ c.0 ]



ПОИСК



Окрестность, в которой чувствуется минимум



© 2025 Mash-xxl.info Реклама на сайте