Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость химических процессов обмена

Влияние pH воды на коагулирование ее примесей. Выше было показано, что чем больше разница между pH обрабатываемой воды и pH изоэлектрического состояния вещества (рНиз), тем больше величина его заряда и тем больше его агрегатив-ная устойчивость. Отсюда становится понятным значение pH исходной воды при коагулировании ее примесей. Образующийся при диссоциации ион алюминия (или железа) принимает участие не только в образовании коллоидов гидроксидов, но и активно действует в процессе обменной адсорбции катионов, вытесняя из диффузионного слоя менее активные катионы. В результате меняются физико-химические свойства примесей я, что самое важное, изменяется их pH изоэлектрической точки. Так, новые значения рНиз для глинистых частиц и гума-тов соответственно будут равны 7,1 и 7,0, т. е. в обычных условиях они будут коагулировать не только между собой, но и с гидроксидом алюминия, рНиз которого — 7,2.  [c.74]


Известны две разновидности сварки давлением без нагрева (сварка взрывом, импульсом магнитной энергии, холодная сварка) и с нагревом (кузнечная, ультразвуковая, трением, диффузионная, высокочастотная, газопрессовая и контактная сварка). Природа образования соединения во всех случаях сварки как с нагревом, так и без него одна это результат взаимодействия между активированными атомами соединяемых поверхностей. Различают три стадии процесса образования соединения при сварке давлением. На первой стадии образуется физический контакт, происходит активация поверхностей, которые сближаются ка параметр кристаллической решетки, преодолевая энергетический барьер, но сохраняют устойчивое состояние, не сливаясь. На второй с т а д и и образуется химическое соединение активированных поверхностей, происходит сварка - сближение атомов на расстояние межатомарного взаимодействия. Ширина границы раздела становится соизмеримой с шириной межзеренной границы, прочность соединения становится соизмеримой с прочностью основного металла. Н а третьей стадии происходит диффузионный обмен масс через объединенную поверхность соединения. При этом вновь полученная поверхность раздела размывается или расчленяется продуктами взаимодействия.  [c.255]

Говоря о попытках расчета адгезии, исходя из термодинамических характеристик окислов как компонентов покрытия и субстрата, необходимо отметить следующее. Свободные энергии образования АС°бр окислов служат мерой химического сродства металлов к кислороду и характеризуют устойчивость окислов к термической диссоциации на исходные компоненты — металл и молекулярный кислород. Чем больше убыль свободной энергии при образовании окисла, тем, при прочих равных условиях, будет прочнее связь между компонентами. Но при отрыве оксидного слоя от металла происходит разрыв связи Ме—О, а не разложение окисла на компоненты (металл - и молекулярный кислород). Поэтому величины АОдбр окислов не могут служить прямой мерой адгезии, они лишь косвенно отражают действительность. Надо иметь также в виду, что упомянутая выше обменная реакция (28) происходит лишь в частных случаях, а именно, когда Ме" более активен химически, чем Ме, и, следовательно, способен оказать восстановительное действие на Ме О, либо, когда идут побочные процессы, например, диффузия с дополнительным выигрышем энергии. Но возможны и другие реакции (см., например, стр. 224).  [c.194]


Механизм защиты подтверждается тем, что блокада атомов неблагородных компонеитов, предохраняющая их от действия агрессивной среды, может происходить только при отсутствии процесса диффузии внутри сплава. В противном случае атомы неблагородного компонента будут диффундировать из глубоких слоев на поверхность сплава и после создания блокады, т. е. пороги устойчивости наблюдаться не будут. Это подтверждается исследованиями коррозии сплава РЬ — Hg в 20%-ной уксусной кислоте. Система РЬ — Hg дает твердые растворы, в которых уже при 20° наблюдается диффузия. Исследования показали, что при наличии диффузии не наблюдается скачкообразного изменения химической стойкости сплава (фиг. 103). Энергетический обмен местами в решетке между Hg и РЬ препятствует созданию барьера из атомов ртути, который мог бы защищать неустойчивый компонент сплава — свинец.  [c.123]

Важным примером осаждения без тока является осаждение титана. Покрытия из этого металла являются наиболее благоприятными вследствие заметного химического сопротивления. Перспективные результаты получены Страуманисом. Если полоску титана поместить в расплав, состоящий из хлористого натрия (или калия), содержащий точное количество кислорода, она разрушается, образуя черную взвесь. Это происходит потому, что поглощение кислорода увеличивает размер решетки и изменяет коэффициент расширения, так что все распадается на небольшие частички титана, содержащие кислород. Если железная или стальная деталь помещается во взвесь, то жидкость, обладая достаточными восстановительными свойствами, очищает поверхность и способствует тому, что частички титана адсорбируются на ней с образованием покрытия. Однако предпочтительнее начинать работать с порошком титана, уже содержащим точное количество кислорода весь процесс при этом проводится в атмосфере гелия. Найдено, что просеянный порошок из продажной титановой губки обычно содержит 3—5% кислорода и пригоден для процесса. Лучшие покрытия получаются из сплавов титана с кислородом, содержащим 95% атомов титана. Специальные исследования Страуманиса показали, что осадки образуются непосредственным ударением титановых частичек небольшой обмен происходит между железом и титаном (Ре и Т1С1з дают РеС и Т1), но в большинстве случаев этот обмен составляет только 4% от осадка титана, кроме того, осадки образуются на алюминиевых частичках, где обменная реакция невозможна. Титан также может быть осажден на меди. Вообще, адгезия достаточно хорошая и покрытые образцы могут изгибаться без отслаивания покрытия они устойчивы в азотной кислоте, а также в сульфате меди, хотя, если предварительная очистка недостаточна, появляются красные разводы [49].  [c.562]

Из состояний равновесия, определяемых условиями (1) или (2), практически реализуются лишь те, к-рые явл. устойчивыми (см. Устойчивость равновесия). Равновесия жидкостей и газов рассматриваются в гидростатике и аэростатике. с. М Тарг РАВНОВЕСИЕ статистическое состояние замкнутой статистич. системы, в к-ром ср. значения всех физ. величин, характеризующих состояние, не зависят от времени. Р. с.— одно из осн. понятий статистической физики, играющее такую же роль, как равновесие термодинамическое в терлюдинамике. Р. с. не явл, равновесным в механич. смысле, т. к. в системе при этом постоянно возникают малые флуктуации физ. величин около ср. значений. Теория Р. с. даётся в статистич. физике, к-рая описывает его при помощи разл. Гиббса распределений (микроканонич., канонич. или большого канонического) в зависимости от типа контакта системы с окружающей средой, запрещающего или допускающего обмен с ней энергией или ч-цами. В теории неравновесных процессов важную роль играет понятие неполного Р. с., при к-ром параметры, характеризующие состояние системы, очень слабо зависят от времени. Широко применяется понятие локального Р. с., при к-ром темп-ра и химический потенциал в малом элементе объёма зависят от времени и пространств, координат её ч-ц. См. Кинетика физическая. д. н. Зубарев. РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ, состояние термодинамич. системы, в к-рое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды. При Р. т. в системе прекращаются все необратимые процессы, связанные с диссипацией энергии теплопровод ность, диффузия, хим. реакции и др. В состоянии Р. т. параметры системы не меняются со временем (строго говоря, те из параметров, к-рые не фиксируют заданные условия существования системы, могут испытывать флуктуации — малые колебания около своих ср. значений). Изоляция системы не исключает определённого типа контактов со средой (напр., теплового контакта с термостатом, обмена с ним в-вом). Изоляция осуществляется обычно при помощи неподвижных стенок, непроницаемых для в-ва (возможны также случаи подвижных стенок и полупроницаемых перегородок). Если стенки не проводят теплоты (как, напр., в сосуде Дьюара), то изоляция наз. адиабатической. При теплопроводящих (диатермических) стенках между системой и внеш  [c.601]



Линейные и нелинейные волны (0) -- [ c.98 ]



ПОИСК



Обмен устойчивостью

Процесс химические

Химические процессы обмена

Химическое устойчивость



© 2025 Mash-xxl.info Реклама на сайте