Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамическое (тепловое) равновесие-»столкновения

Термодинамическое (тепловое) равновесие столкновения I 22, 246  [c.412]

Термодинамическое (тепловое) равновесие и столкновения 122, 246  [c.445]

Предполагается, что электроны приходят в состояние теплового равновесия со своим окружением исключительно благодаря столкновениям 1). Считается, что столкновения поддерживают локальное термодинамическое равновесие чрезвычайно простым способом скорость электрона сразу же после столкновения не связана с его скоростью до столкновения, а направлена случайным образом, причем ее величина соответствует той температуре, которая превалирует в области, где происходило столкновение. Поэтому чем более горячей является область, где происходит столкновение, тем большей скоростью обладает электрон после столкновения.  [c.22]


Предположим, что вдоль оси х в кристалле диэлектрика приложен небольшой градиент температуры (фиг. 25.3). Как и в модели Друде (см. т. 1, стр. 21), мы считаем, что локальное термодинамическое равновесие поддерживается просто благодаря столкновениям. Фононы, испытавшие столкновение в точке х, вносят в неравновесную плотность энергии вклад, пропорциональный равновесной плотности энергии при температуре Т х), т. е. и х) = I (д )]. Каждый фонон в данной точке дает вклад в плотность теплового потока в направлении X, равный произведению д -компоненты его скорости на его вклад в плотность энергии ). Однако средний вклад фонона в плотность энергии зависит от положения точки его последнего столкновения. Поэтому существует корреляция между тем, откуда пришел фонон (т. е. направлением его скорости), и его вкладом в среднюю плотность энергии в результате суммарный поток тепла оказывается отличным от нуля.  [c.127]

Точно так же в случае, если в газе можно выделить области, размеры которых превосходят длину свободного пробега молекул газа, то в каждой из них вводятся средние для данной области величины (средняя скорость теплового движения частиц, плотность, кинетическая энергия и т. д.). При этом говорят, что имеет место локальное термодинамическое равновесие (ЛТР). Благодаря столкновениям частицы обмениваются импульсом, энергией и за времена порядка времени свободного пробега т (практически за 2—3 столкновения при одинаковой массе частиц т) приходят к равновесному (максвелловскому) распределению. В этом случае частицы можно характеризовать температурой Т, определяющей среднюю кинетическую энергию частицы  [c.57]

Пусть атомарный газ находится в замкнутом объеме при изотермических условиях. В том же объеме присутствует, естественно, и электромагнитное поле, обусловленное тепловым излучением. Как было выяснено в главе XXXVI, рассматриваемая система, состоящая из газа и теплового излучения, будет находиться в термодинамическом равновесии, если газ и излучение обладают одной и той же температурой, атомы подчинены распределению Максвелла—Больцмана, а излучение — формуле Планка. Однако термодинамическое равновесие системы не означает, что энергия каждого атома газа сохраняется неизменной. Между атомами и полем осуществляется постоянный обмен энергией. Атомы излучают и поглощают фотоны, переходя из одних состояний в другие происходит и обмен импульсами между атомом и полем — импульс изменяется в процессе испускания и поглощения фотона (см. 184). Между атомами газа осуществляется также обмен импульсами и энергией при их столкновениях между собой. Однако ни один из этих процессов не нарушает термодинамического равновесия системы в целом и соответствующих ему законов распределения атомов по энергиям и скоростям, равно как и распределения энергии излучения по спектру.  [c.735]


Необходимо отметить некоторые недоразумения, которые встречались по поводу этого случая возбуждения в более старых литературных источниках, а именно иногда считалось, что термический характер возбуждения специфически связан с возбуждением при столкновениях нейтральных атомов и молекул, совершающих тепловое движение. Наличие в светящемся объеме свободных электронов или других заряженных частиц, как предполагалось, нарушает тепловой характер возбуждения. В действительности он обусловливается лишь наличием термодинамического равновесия независимо от того, при столкновении с какими частицами происходит возбуждение атомов. При этом обычно рассматриваются случаи неполного равновесия, в том смысле, что в источнике света отсутствует равновесие с излучением. Равновесие считается выполненным лишь по отношению к движению частиц всех сортов и их распределению по энергетическим уровням. Другими словами, считается, что частицы всех сортов движутся со скоростями, распределенными по закону Максвелла с одним и тем же значением температуры Г, и что они распределены по энергетическим уровням по закону Больцмана с той же температурой Т. Тогда, при одновременном отсутствии равновесия с излучением, интенсивность линий, для которых самопоглощение не играет заметной роли, выражается формулой (2). Излучатель, удовлетворяющий формуле (2), называется больцмановским излучателем. При возрастании оптической плотности, когда сказывается самопоглощение света, больцманов-ский излучатель начинает переходить в планковский излучатель. )  [c.428]

Благодаря тепловому движению молекул, сопровождающемуся хаотическими столкновениями, при любой температуре в газе можно обнаружить как очень медленные, так и очень быстрые молекулы. Закон распределения молекул по скоростям Максвелла справедлив для однородного одноатомпого идеального газа в условиях термодинамического равновесия п отсутствия внешних сил.  [c.205]

Указанное допущение наверняка справедливо при малых числах Кнудсена. До каких именно значений чисел Кнудсена при решении задач теплообмена эти уравнения справедливы с достаточной точностью, неизвестно. Единственным критерием здесь является эксперимент. Некоторой опорной точкой служит предельный случай больших чисел Кнудсена. В этом случае член, учитывающий столкновения молекул в уравнении Больцмана, отбрасывается и решение этого уравнения дается распределением Максвелла, с помощью которого при известных предположениях о характере взаимодействия молекул с поверхностью могут быть найдены тепловые потоки. Мы в дальнейшем ограничимся рассмотрением некоторых задач конвективного теплообмена при наличии термодинамического равновесия.  [c.36]


Смотреть страницы где упоминается термин Термодинамическое (тепловое) равновесие-»столкновения : [c.254]   
Физика твердого тела Т.2 (0) -- [ c.22 , c.246 ]

Физика твердого тела Т.1 (0) -- [ c.22 , c.246 ]



ПОИСК



Равновесие термодинамическо

Равновесие термодинамическое

Столкновения

Столкновения и термодинамическое равновесие

Тепловое равновесие

Термодинамическое (тепловое) равновесие-»столкновения локальное



© 2025 Mash-xxl.info Реклама на сайте