Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория для толстых оболочек для толстых пластин

Б. Г. Галеркину принадлежит большой цикл исследований по теории изгиба топких пластин, толстых плит и теории оболочек. Для вывода уравнений теории оболочек он, по-видимому, впервые применил уравнения трехмерной теории упругости.  [c.11]

Книга oj toht из семи глав. В главе 1 разобраны общие принципы механики деформируемых твердых тел. Глава 2 отведена классической теории изгиба стержней. В главе 3 содержится усовершенствованная теория изгиба упругих стержней. Глава 4 включает в себя классическую теорию упругих тонких пластин (малые прогибы, колебания, устойчивость, конечные прогибы). В главе 5 дается теория больших прогибов тонких пластин и теория малых прогибов толстых пластин. В главе 6 представлены соотношения классической теории оболочек (уточненные и упрощенные варианты теории). В заключительной главе рассматривается круговая цилиндрическая оболочка (малые колебания и линеаризированная устойчивость).  [c.6]


Решения эТих уравнений аналогичны решениям уравнений (7.3а), которые обсуждались ранее в 7.1. Как уже отмечалось, эти ре пения соответствуют соотношение , имеющим более высокий, чем это требуется в соответствии с физическим смыслом задачи, порядок, но, несмотря на это, нельзя рассчитывать, что с помощью этих решений можно удовлетворить граничным условиям более точным, чем интегральные. Для удовлетворения более полных или точных граничных условий требуется произвести наложение дополнительных полей локальных. напряжений, которые получаются из рассмотрения уравнений трехмерной задачи теории упругости. Методы, рассматривавшиеся в 5.5 для толстых пластин, можно, как уже сцмёчалось ранее, применять, получая прекрасную аппроксимацию для толстостенных цилиндрических и. инйх оболочек, если пренебречь кривизной (как об этом говорилось в 7.1, такой подход особенно удобен при гра-36 .  [c.555]

Труды Б. Г. Галеркина по теории пластин и оболочек, по устойчивости упругих систем, по методам решения пространствеппой задачи теории упругости, по теории толстых плит являются важным вкладом в отечественную науку.  [c.137]

Выводы, полученные для балок, обычно применимы также в теориях пластин и оболочек, и в последующих главах эти случгш будут обсуждаться. Будет обнаружено, что поправки обычно необходимы только для составных конструкций (таких, как решетчатые балки или пластины и оболочки, изготовленные из слоистых материалов), у которых центральная часть облегчена и имеет сравнительно низкое сопротивление поперечному сдвигу, или для однородных конструкций, у которых амплитуда волны црогиба имеет порядок величины толщины (например, для толстых массивных конструкций или для высоких частот колебаний, для которых характерны волны небольшой длины).  [c.54]

Галеркину ) принадлежит болыпой цикл исследований по теории изгиба тонких пластин, толстых плит и теории оболочек. Для вывода уравнений теории оболочек он, по-видимому, впервые применил уравнения трехмерной теории упругости. Папко-вичем ) впервые предложено решение задач теории упругости в перемещениях в форме гармонических функций, а также исследованы общие теоремы устойчивости упругих систем, решен большой цикл задач об изгибе пластин при различных граничных условиях.  [c.13]


Смотреть страницы где упоминается термин Теория для толстых оболочек для толстых пластин : [c.76]    [c.425]    [c.352]   
Анализ и проектирование конструкций. Том 7. Ч.1 (1978) -- [ c.195 , c.197 ]



ПОИСК



Оболочки Теория — См. Теория оболочек

Оболочки толстые

Пластина толстая

Пластины и оболочки

Теория для толстых оболочек

Теория оболочек

Теория пластин

Толстов



© 2025 Mash-xxl.info Реклама на сайте