Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Регенерация тепла в паровых турбинах

Экономичность ПГТУ выше ГТУ и ПТУ, во-первых, за счет применения в них рассмотренных циклов (без и с промежуточным нагревом парогазовой смеси) и, во-вторых, за счет работы с высокой температурой парогазовой смеси на лопатках парогазовых турбин (более высокой, чем у паровых турбин). При применении новых циклов условия работы парогазовых турбин во многом соответствуют условиям работы паровых как в тех, так и в других применяются рабочие газы (парогазовая смесь или пар) высокого давления, близкие по своим теплофизическим свойствам. Однако если в паровых турбинах расширение пара происходит до низкого давления (—4-10 Н/м ), то в парогазовых турбинах — лишь до атмосферного давления. Поэтому парогазовые турбины, работающие по новым циклам без регенерации тепла, более компактны.  [c.77]


Теплообменные аппараты — холодильник и конденсатор, расположенные за парогазовой турбиной,— представляют собой обычные низкотемпературные теплообменники, которые на современном уровне техники и знаний могут быть выполнены достаточно компактными, легкими по весу и с низкой стоимостью. Тепло, отводимое в холодильнике и конденсаторе от парогазовой смеси, может быть использовано для нагрева свежей парогазовой смеси и топлива — регенерации тепла, а также для получения водяного пара (или горячей воды) — генерации дополнительной электрической энергии в обычном паровом цикле или теплофикации — при комбинированном производстве электрической и тепловой энергии на теплофикационных электростанций с ПГТУ, что позволит значительно повысить коэффициент использования (до 70—75%) и снизить удельный расход топлива (до 0,16—0,18 кг у.т./(кВт-ч)).  [c.129]

Четвертым средством повышения экономичности паровых турбин является регенерация тепла. Принцип регенерации тепла состоит в том, что пар, выходя из первой ступени, идет в регенератор, где отдает часть своего тепла питательной воде, а затем возвращается на вторую ступень турбины. Такой процесс передачи тепла питательной воде повторяется после нескольких ступеней. Повышение же температуры питательной воды, как мы видели для цикла Ренкина, ведет к повышению к. п. д. всей установки.  [c.126]

Однако в действительности подогрев производственного конденсата, а иногда и добавочной химически очищенной воды частично учитывается при составлении диаграмм режимов турбин, которыми пользуются при расчете тепловой схемы ТЭЦ. На диаграммах режимов указывается подогрев каких потоков, в каком количестве и от какой температуры предполагается при составлении диаграммы режимов. Это так называемые условия регенерации паровой турбины. Следовательно, при определении расхода пара на деаэратор добавочной воды надо исключить затрату тепла, эквивалентную теплу, учтенному при составлении диаграмм режимов турбин, связанных с этим деаэратором. Эта величина подсчитывается по формуле  [c.74]

Образующийся в конденсаторе конденсат откачивается конденсатным насосом 14, который направляет его через охладитель парового эжектора 15 и подогреватели конденсата 18 и 19 ъ деаэратор 21. Паровой эжектор служит для удаления из конденсатора воздуха, проникающего в систему через неплотности. Подогреватели конденсата являются частью регенеративной системы подогрева питательной воды котла за счет тепла пара, отбираемого в некотором количестве из турбины на разных стадиях его расширения, еще до достижения паром давления в конденсаторе. Количество пара, отбираемого для целей регенерации, составляет 12- -18% от общего количества поступающего в турбину пара.  [c.7]


На рис. 14 изображены некоторые характерные тепловые схемы ПГУ с ВПГ. В ПГУ с простой ГТУ (рис. 14, а) часть тепла выхлопных газов ГТУ (площадь 7" 788"7") утилизируется паровой частью цикла в экономайзере 5 без вытеснения паровой регенерации. В ПГУ с напорным экономайзером (рис. 14, б) нагрев питательной воды по выходе ее из регенеративных подогревателей происходит в экономайзере 5, обогреваемом газами из турбины высокого давления перед их поступлением в турбину низкого давления ГТУ. Промежуточное охлаждение газов перед турбиной низкого давления (площадь 7" 5 28" 7") приводит к уменьшению полезной работы газовой ступени.  [c.24]

Большой ресурс работы парогазовых турбин может быть достигнут за счет применения эффективных систем охлаждения деталей и узлов, подверженных действию высоких температур и нагрузок, уменьшения нагрева деталей с помощью тепловой изоляции, теплоотражательных экранов и т. п. и применения жаростойких и жаропрочных материалов и жаростойких покрытий для деталей, подвергающихся воздействию высоких температур и больших нагрузок. Еще больший эффект в увеличении ресурса работы парогазовых турбин, очевидно, может быть получен путем снижения начальной температуры газа — парогазовой смеси. При этом, конечно, снизится и к. п. д. ПГТУ. Но основное достоинство ПГТУ, работающих по новым циклам с регенерацией тепла (особенно с промежуточным нагревом парогазовой смеси), как раз и состоит в том, что, несмотря на понижение начальной температуры газа (по сравнению с авиационными газовыми турбинами), они имеют к. п. д., больший, чем обычные ПТУ, и поэтому являются конкурентоспособными с последними. Поскольку в ПТУ с открытой схемой нагрев рабочего тела осуществляется так же, как и в газотурбинных двигателях, непосредственно в камере сгорания (без применения поверхностей нагрева какого-либо теплообменника), то начальная температура газа может быть более высокой, чем в паровых турбинах, и составлять примерно 1200—1400 К. При этом нижнее значение начальной температуры относится к энергетическим (длительно работающим), а верхнее — к транспортным (авиационным — с меньшим ресурсом работы) парогазовым турбинам. Начальное же давление парогазовой смеси равно 3—30 МН/м . Такие же величины начальных тепловых параметров газа можно принять и для ПГТУ с закрытой тепловой схемой с высокотемпературным ядерным реактором. При создании парогазовых турбин, безусловно, может быть использован опыт отечественного энергетического и транспортного газо- и па-ротурбостроения.  [c.78]

Существуют и другие направления экономии энергии в конечном энергоиспользовании. В Великобритании с 1954 г. работает Национальное бюро по эффективности использования топлива в промыщленности. Тщательные исследования этого бюро, проведенные еще в 1965 г., во времена дещевой энергии, показали, что 2,5 млн, ф. ст. капитальных затрат на замену и модернизацию оборудования на промышленном предприятии позволят сэкономить 300 тыс. т у. т. ежегодно, срок окупаемости капитальных вложений в рассмотренном случае был всего два года. В рассмотренной ранее работе по изучению централизации указывается на возможность годовой экономии топлива в Великобритании 10 млн. т у. т. за счет замены стандартных электродвигателей переменного тока с постоянной скоростью вращения электроприводом с переменными скоростями вращения 4,5—5 млн. т у. т. — за счет утилизации бытового мусора и промышленных отходов, примерно 12 млн. т у. т. — за счет применения регенерации тепла на дизельных генераторах и паровых турбинах с противодавлением. Финский национальный фонд исследования и развития разработал проект экспериментальной установки для использования вторичного тепла от НПЗ в целях опреснения морской воды путем вакуумного испарения. В этом проекте привлекает также сокращение загрязнения среды при уменьшении температуры сбросных вод НПЗ, используемых для охлаждения.  [c.277]


Каждой начальной температуре пара соответствует одно термодинамически наивыгоднейшее давление. Это паивыгодней-шее давление зависит от температуры подогрева питательной воды в системе регенерации. Повышение температуры подогрева питательной воды несколько увеличивает начальное давление. Например, для t = 600° С при увеличении температуры питательной воды до t а > 270° С наивыгоднейшим давлением вместо р = = 220 кг/см становится р > 250 кг1см . Величина наивыгоднейшего давления также зависит и от степени совершенства паровой турбины как трансформатора тепла в механическую работу. При увеличении относительного к. п. д. турбины величина наивыгод-нейшего давления для данной температуры возрастает. Развитие отечественной энергетики идет по пути применения наивыгоднейших начальных давлений пара при допустимой для данного времени начальной температуре пара.  [c.58]

Я/С —котлоагрегат ПТ — паровая турбина Г —электрический генератор Я, Я, Яз Я, Я П . Я, —подогреватели системы регенерации Л —деаэратор л — конденсатор ГЯ — потребитель тепла СПК —сетевая подогреватель в конденсаторе СП2 и СЯ/ —сетевые подогреватели ЯВЛГ—пиковый водогрейный котел КН ПН ДН СН Л СЯ —насосы конд >нсационный, питательный, дренажный, сетевой воды и конденсата сетевых подогревателей.  [c.245]

ТУРБОГЕНЕРАТОРЫ. T. паровой есть агрегат, состоящий иа трех основных частей паровой турбины (см. Турбины), конденсатора (см.) и генератора электрического тока. В том случае, если турбина выполнена для работы с противодавлением, конденсационной установки может и не быть. Вспомогательное оборудование турбогенератора состоит из а) насосных агрегатов и эжекторов для охлаждающей воды, конденсата и воздуха, б) воздущных фильтров генератора, в) масло- и воздухоохладителей, г) соответствующих паро-, водо- и маслопроводов, д) контрольно-измерительной и защитной аппаратуры. Кроме того в оборудование современных Т., работающих с регенерацией тепла, входит регенеративное устройство, состоящее из подогревателей, или бойлеров, испарителей п в нек-рых случаях деаэраторов. Схема рас-  [c.164]

Установка с высоконапорными парогенераторами имеет ряд преимуществ по сравнению с котельными обычного типа уменьн1ен габарит установки, снижен расход металла и др. Эти установки обеспечивают большую экономию топлива по сравнению с чисто паровыми и газотурбинными установками. Уже в насгоя цее время парогазовые установки позволяют получить к. и. д. до 0,33—0,36, что дает им возможность конкурировать с паротурбинными установками на давление 130 бар и температуру пара 565° С. Увеличив же начальную температуру газа в газотурбинных установках до 800— 900° С, применив многоступенчатое сжатие воздуха, промежуточный подвод тепла, регенерацию в газовой и паровой частях п усовер-ше 1ствование проточных каналов компрессоров и газовых турбин, можно получить к. п. д. парогазовой турбинной установки до 0,48 и вьпне.  [c.324]

Постоянный избыток воздуха в уходящих газах при неизменных параметрах пара, температуре питательной воды и температуре уходящих газов обусловливает постоянство относительного расхода тепла на вытеснение паровой регенерации ( р), абсолютных электрических к. п. д. этих участков цикла (т] ) и к. п. д. ВПГ (Лк. а), как это следует из уравнений (13)—(17). Уменьще-ние избытка воздуха в продуктах сгорания перед газовыми турбинами при постоянной его величине в уходящих газах приводит к увеличению к. п. д. ПГУ.  [c.32]


Смотреть страницы где упоминается термин Регенерация тепла в паровых турбинах : [c.793]    [c.41]    [c.47]   
Технический справочник железнодорожника Том 2 (1951) -- [ c.380 ]



ПОИСК



Регенерация

Регенерация тепла

Турбина паровая

Турбины Паровые турбины

Турбины паровые



© 2025 Mash-xxl.info Реклама на сайте