Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектров анализ по эффекту Зеемана

Для дифракционной решетки обычно наблюдают спектры второго или третьего порядков, т. е. т = 2 или 3. В соответствии с этим дисперсионная область ДА, = Х/2 или А./3 очень велика. В этом — огромное преимущество дифракционной решетки, которая позволяет анализировать даже белый свет, т. е. очень обширный спектральный интервал (в тысячи ангстремов), тогда как пластинка Люммера—Герке, например, не дает уже отчетливых максимумов, если падающий на нее свет представляет спектральный интервал, превышающий один ангстрем. Поэтому интерференционные спектроскопы пригодны только для анализа очень однородного света, например для спектральных линий, испускаемых разреженными газами. Они оказывают неоценимые услуги при анализе таких линий, позволяя устанавливать наличие нескольких компонент в этой линии (тонкая структура), оценивать ширину линии, наличие изменений (расщеплений) под действием внешних причин (например, эффект Зеемана) и т. д.  [c.218]


Из сказанного видно, что для анализа спектра, наряду с постоянными разностями частот, приходится привлекать ряд других критериев правила интервалов и отбора и интенсивности линий. Нормальная конфигурация атома определяется по спектру погло-ш,ения. Весьма большую роль при анализе сложных спектров играют данные, вытекаюш,ие из изучения эффекта Зеемана, о чем будет сказано ниже ( 67).  [c.84]

Б табл. 79, Однако и здесь наблюдение эффекта Зеемана помогает провести анализ спектра, так как позволяет найти значение J и сопоставить наблюдаемые типы расщепления с теми, которые имели бы место при нормальной L, 5]-связи или при [у, у ]-связи. Для успешного сопоставления важно как можно более точно экспериментально установить тип магнитного расщепления линий. В случае сложных спектров этого можно достигнуть лишь в достаточно сильных магнитных полях. С этой целью Гаррисоном и его сотрудниками был построен магнит, позволяющий получать в длительном режиме до 100 000 3, В таких полях изучались типы магнитного расщепления в спектрах Fe, Rh, Ru, W, редких земель, тория и т. д. [50-52]  [c.375]

ПО которому можно непосредственно найти истинное значение главного квантового числа п. Анализ общего характера спектра, и особенно наблюдение эффекта Зеемана (гл. V), позволяет определить значения квантовых чисел L и J, соответствующих данному терму. Отсюда, в свою очередь, можно установить значения квантовых чисел для электронов, образующих конфигурацию, которой принадлежит данный терм.  [c.229]

Можно ожидать появление спектра магнитного вращения (без ограничения малыми значениями J) при переходах между невырожденными дублетными состояниями, если в верхнем и нижнем состояниях разрыв связи спина с вращением при изменении N происходит в разной степени. (При полном разрыве связи из-за правила отбора АЛ/s = О эффекта Зеемана быть не должно, а следовательно, не должен наблюдаться и спектр магнитного вращения.) Такой случай был обнаружен в спектре поглощения NOg в видимой области (Вуд и Дике [1318]). Этот спектр исследовался также при более высоком разрешении Дугласом [294а]. Упрощение спектра происходило не в такой стенени, в какой этого можно было бы ожидать, и провести полный анализ пока еще не удалось. В случае другого дублетного перехода, для полос IO2 в видимой и близкой ультрафиолетовой области, спектр магнитного вращения обнаружен не был, по-видимому, из-за того, что в обоих состояниях спин почти не связан с вращением.  [c.273]

Дуглас [293] показал, что в полосах первой системы наблюдается заметный эффект Зеемана, свидетельствующий о том, что верхнее состояние должно быть триплетным состоянием. На этом основании будем обозначать соответствующий переход как а — X-переход. Мерер [822] проанализировал вращательную структуру ряда полос рассматриваемой системы и нашел ясные доказательства триплетного характера расщепления, хотя он и не смог обнаружить некоторые из ожидаемых ветвей (см. стр 268). Он установил, что система связана с электронным переходом так как в спектре наблюдаются только подполосы с АК = 1. Представляется вероятным, что система А —X соответствует переходу 51—однако это предположение пока не подтверждено детальным анализом вращательной структуры полос. Другая интересная особенность системы при 3900 А заключается в появлении для колебания Vз (антисимметричное валентное колебание) полосы 1—О, интенсивность которой сравнима с интенсивностью полосы 0—0. Согласно Ван дер Ваальсу [1248а], появление такой запрещенной компоненты нри электронном переходе не может быть обусловлено простым электронно-колебательным взаимодействием с другим триплетным состоянием (типа В ), а должно быть связано с колебательным спин-орбитальным расщеплением. При этом расщеплении, если колебание Гз (Ьг) возбуждается нечетным числом квантов, Лг-ком-понента состояния смешивается с 1Д1-состоянием и электронный переход Вх — сопровождается появлением полос 1—О, 3—О,. . ., заимствующих интенсивность у соседнего перехода  [c.522]


При анализе явления Зеемана в спектрах некубических кристаллов удобно различать два случая Яо С и Яо 1 С , где С — главная ось порядка п. При //о С для изолированных спектральных линий наблюдаются простые симметричные картины расщепления (линейный эффект Зеемана). Зная параметры кристаллического поля (из данных ЭПР или из оптических данных), моншо рассчитать, действуя обычными методами теории возмущений, величины расщепления уровней, связанных с исследуемыми оптическими переходами и имеющими вырождение не выше двухкратного. На основании сравнения g -факторов наблюдаемого и вычисленного может быть сделано заключение о том, с каким уровнем изолированного иона связан данный штарковский подуровень. Однако, такой анализ, в ряде случаев весьма сложен по той причине, что в слабых кристаллических полях (например, сравнительно слабые поля этилсуль-фатов редких земель) редко встречаются изолированные уровни, расщепление которых в сравнительно сильных магнитных полях было бы свободно от взаимодействия с соседними уровнями.  [c.100]

В простейшем микроволновол спектрометре излучение генератора СВЧ пропускают через волноводную ячейку, заполненную исследуемым газом, и направляют на приёмник излучения, сигнал к-рого, пропорциональный принимаемой мощности, подаётся на регистрирующий прибор. Линии поглощения в газе регистрируют по уменьшению приходящей на приёмник мощности излучения определённых частот. Для новыше-ния чувствительности спектрометров используют модуляцию частот спектральных линий, действуя на частицы электрич. [Штарка эффект) или магн. Зеемана эффект) полем и выделяя сигнал на частоте модуляции. В миллиметровом и субмиллиметровом диапазонах используют модуляцию частоты излучения источника и приём сигналов от линий поглощения по модуляции давления исследуемого газа при поглощении им моду-лиров. излучения (см. Субмиллиметровая спектроскопия). Большой запас чувствительности позволяет исследовать, напр., спектры нестабильных молекул, запрещённые спектры молекул, а также применять М. с. для молекулярного и изотопного спектрального анализов. Повышения чувствительности в разл. микроволновых спектрометрах достигают также накачкой вспомогат. излучения (т. н. двойной резонанс), сортировкой частиц по состояниям (см. Молекулярный генератор) и др.  [c.133]

Магн. дипольное вз-ствие обычно наблюдается в магнитно-упорядочен-ных в-вах (ферро-, антиферро-, ферримагнитных), в к-рых на ядра действуют сильные магн. поля (напряжённостью 10 Э). Энергия магн. дипольного вз-ствия пропорц. произведению магн. поля Н на магн. момент ядра и зависит от их взаимной ориентации. Магн. дипольное вз-ствие приводит к расщеплению осн. и возбуждённого состояний ядер, в результате чего в спектре поглощения появляется неск. линий, число к-рых соответствует числу возможных 7-переходов между магн. подуровнями (см. Зеемана эффект) этих состояний. Напр., для ядра Ре число таких переходов равно 6 (рис. 2, г). По расстоянию между компонентами магн. сверхтонкой структуры можно определить напряжённость магн. поля, действующего на ядро в тв. теле. Величины этих полей очень чувствительны к особенностям электронной структуры тв. тела, к составу магн. материалов, поэтому исследование магн. сверхтонкой структуры используется для изучения св-в кристаллов. Зависимость сверхтонкой структуры мёссбауэровского спектра от вида электронных волновых ф-ций позволяет использовать данные М. с. для изучения распределения зарядовой и спиновой плотности в ТВ. телах, для хим. анализа и т. п. Чувствительность формы мёссбауэровского спектра к динамич. эффектам используется в М. с. для изучения диффузии атомов, спиновой релаксации, динамич. явлений при фазовых переходах и т. д.  [c.408]


Смотреть страницы где упоминается термин Спектров анализ по эффекту Зеемана : [c.527]    [c.101]    [c.155]   
Оптические спектры атомов (1963) -- [ c.369 ]



ПОИСК



Зеемана

Зеемана эффект

Спектров анализ



© 2025 Mash-xxl.info Реклама на сайте