Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение переноса *-й компоненты смеси

При очень больших скоростях потока и при высоких температурах в аэродинамике имеют дело со смесью газов. Например, воздух при температурах до 500 К остается совершенным двухатомным газом, имеющим постоянный молекулярный вес т fn 29 и показатель адиабаты у = 1,405. При дальнейшем росте температуры увеличивается теплоемкость воздуха, что объясняется возбуждением внутренних степеней свободы в молекулах воздуха. Затем с ростом температуры происходит диссоциация воздуха (молекулы распадаются на атомы) при температурах свыше 2000 К распадается молекулярный кислород, при 4000 К и выше существенным становится разложение азота. В диапазоне температур 7000... 10 ООО К начинается процесс ионизации атомов с образованием свободных электронов. Указанные процессы являются весьма энергоемкими, и это обстоятельство необходимо учитывать при расчете течений. Если скорость химических превращений в газовой смеси велика по сравнению со скоростями газодинамических процессов, то смесь находится в химическом равновесии. В этом случае, как уже отмечалось, вместо уравнений переноса i-то компонента следует рассматривать законы действующих масс в виде (1.26).  [c.29]


Общие дифференциальные уравнения диффузионного и теплового пограничных слоев известны, но для данного конкретного случая (двухкомпонентная газовая смесь с фазовыми превращениями) они достаточно сложны [32, 51]. Сделанные упрощения дифференциальных уравнений пограничного слоя имеют своей целью усилить роль основного эффекта при расчетах взаимосвязанных процессов тепло- и массообмена между газом и жидкостью и в то же время по возмол<ности в наибольшей мере учесть второстепенные. Как видно из уравнений (1-10), (1-18), основным результатом таких упрощений является возможность представить линейным распределение потенциалов переноса массы и энергии в пограничных слоях за счет осреднения некоторых физических параметров в пределах слоя. Этот результат есть следствие особенностей рассматриваемых процессов, включая невысокие относительные скорости фаз, небольшие разности потенциалов переноса, а также специфическое для двухкомпонентных смесей равенство абсолютных значений градиентов концентраций компонентов, градиентов их парциальных энтальпий (Я , Яг) и парциальных давлений.  [c.30]

Чтобы роль диффузионного члена уравнения энергии стала яснее, рассмотрим еще раз перенос вещества через нижнюю плоскость контрольного объема, показанного на рис. 4-7. Следует иметь в виду, что рассматривается не однокомпонентное вещество, а смесь. Поэтому, когда говорят о скорости смеси, термин скорость не вполне определен. Не существует какой-то одной скорости всех компонентов. Под скоростью смеси подразумевается обычно средневзвешенное значение (по массам) из скоростей отдельных компонентов. Поэтому фактическая скорость различных компонентов может быть как больше, так и меньше средней.  [c.53]

Большинство теоретических исследований теплопроводности газовых смесей являются продолжением и развитием фундаментальных работ Л. Больцмана [11]. Газ или смесь газов структурно моделируется дискретной средой с локальными скоплениями массы в виде атомов и молекул, хаотически движущихся в пространстве. Используя представления молекулярно-кинети-ческой теории, Л. Больцман вывел основное интегро-дифференциальное уравнение газового состояния, решение которого позволяет аналитически выразить коэффициенты переноса, в том числе и коэффициент теплопроводности смеси газов через определяющие параметры (атомные или молекулярные веса компонент, их форму и размеры, радиальную функцию и закон распределения скорости молекул, вид и параметры потенциала межмолекулярного взаимодействия). Однако до настоящего времени геометрические параметры молекул веществ и характер их силового взаимодействия изучены недостаточно полно. Кроме того, исходное интегро-дифференциальное уравнение относится к однородному одноатомному газу, находящемуся в условиях, близких к равновесному состоянию.  [c.233]



Механика жидкости и газа Издание3 (1970) -- [ c.83 ]



ПОИСК



Переноса уравнение уравнение переноса

Переносье

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте