Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение жидкости ламинарное пульсирующее

Пульсирующее ламинарное движение вязкой жидкости по круглой цилиндрической трубе  [c.400]

ПУЛЬСИРУЮЩЕЕ ЛАМИНАРНОЕ ДВИЖЕНИЕ ВЯЗКОЙ ЖИДКОСТИ 493  [c.493]

Известно, что все течения жидкостей и газов делятся на два резко различные типа спокойные и плавные течения, называемые ламинарными, и их противоположность —так называемые турбулентные течения, п ц которых скорость, давление, температура и другие гидродинамические величины беспорядочно пульсируют, крайне нерегулярно изменяясь в пространстве и во времени. В качестве типичного примера мы приводим на рис. 1 запись колебаний во времени скорости ветра, вертикальной компоненты скорости и температуры в атмосфере вблизи земли, полученную при измерении скорости и температуры с помощью специальных малоинерционных приборов. Сложный характер этих кривых сразу показывает, что соответствующее движение воздуха было турбулентным. Множество пульсаций различных периодов и амплитуд, наблюдающееся на представленных на рис. 1 записях, иллюстрирует сложную внутреннюю структуру, турбулентных течений, резко отличающихся в этом отношении от ламинарных течений. Эта сложная структура сказывается на многих свойствах течения, оказывающихся весьма различными в ламинарном и турбулентном случаях. Так, турбулентные течения обладают гораздо большей способностью к передаче количества движения (образно говоря, турбулентная среда имеет огромную эффективную вязкость) и потому во многих случаях оказывают гораздо большее силовое воздействие на обтекаемые жидкостью или газом твердые тела. Аналогичным образом турбулентные потоки обладают повышенной способностью к передаче тепла и пассивных примесей, к распространению химических реакций (в частности, горения), к переносу взвешенных  [c.9]


Различают ламинарную и турбулентную свободные конвекции. При ламинарном движении частицы жидкости перемещаются, не перемешиваясь по своим траекториям, и в каждой точке среды скорость определенна. При турбулентном движении частицы жидкости перемещаются хаотически, неупрочненно, направление и величина скорости отдельных частиц непрерывно меняются. Скорость жидкости в каждой точке среды пульсирует. Поэтому при турбулентном течении обычно рассматривают среднестатистические значения скоростей и температур, используя осредненные уравнения движения и энергии.  [c.195]

При выводе уравнений Навье—Стокса не делалось каких-либо предположений о режиме движения. Поскольку свойство вязкости присуще реальным жидкостям независимо от режима их движения и при переходе от ламинарного течения к турбулентному другие физические свойства не изменяются, можно предполагать, что обобщенная гипотеза Ньютона, а значит и опирающиеся на нее уравнения Навье—Стокса, справедливы как при ламинарном, так и при турбулентном движении жидкости. Однако в последнем случае использовать уравнения Навье—Стокса для получения каких-либо прикладных решений практически невозможно. Входящие в них мгновенные скорости и давление при турбулентных режимах являются пульсирующими величинами. Даже если бы эти параметры удалось найти путем решения уравнений Навье—Стокса, что представляет крайне трудную задачу, то использовать эти мгновенные значения величин в практических целях было бы весьма затруднительно. Поэтому для турбулентного режима ставится задача отыскания усредненных во времени скоростей и давлений. Эти усредненные величины сами могут оказаться зависящими или независящими от времени. В первом случае турбулентнсе течение считается неустановившимся, а во втором — установившимся. -  [c.96]

При турбулентном движении направления общего движения жидкости и движения отдельных ее частиц не совпадают. Турбулентное движение характеризуется сложными траекториями, множеством завихрений и водоворотов, непрерывно возникающих и исчезающих. Это неупорядоченное движение, в котором мгновенная скорость, т. е. скорость в дайной точке, в какой-либо момент времени, не остается постоянной, как в случае ламинарного движения,— она все время меняется по величине и по направлению— пульсирует. При этом значения осреднениой скорости движения жидкости во времени остаются практически постоянными по величине и направлению. Направление этой осредненной скорости и обусловливает основное продольное течение жидкости.  [c.126]


По исследованиям устойчивости неустановившегося движения сплошных сред в трубах известно немного работ. Краткий обзор большинства этих работ приводит Т. Сарпкая перед описанием своих экспериментов по исследованию в трубе устойчивости ламинарного пульсирующего потока, не меняющего направления течения [64]. Этот обзор должен быть дополнен работой С. И. Сергеева, в которой даны результаты визуального наблюдения за периодическими колебаниями столба воды в стеклянных трубках [67]. Оба автора отмечают увеличение критического числа Рейнольдса, при котором нарушается устойчивость неустановившегося потока по сравнению с известным из гидравлики критическим числом Рейнольдса для установившегося ламинарного движения. При этом результаты экспериментов Т. Сарпкая подтверждаются экспериментами Д. Гилбреча и Г. Комбза и не согласуются с экспериментами Г. Дарлинга, который при периодически изменяющемся расходе жидкости получил критическое число Рейнольдса, равное 1500.  [c.187]

При анализе особенностей нестационарного пульсирующего течения в трактах в подразд. 2.7.1 было показано, что напряжение трения в ламинарном потоке существенно зависит от частоты. С увеличением частоты изменяется эпюра скорости— от практически параболической, характерной для течения Пуазейля при низких частотах, до почти прямоугольной в ядре потока для высоких частот. Соответственно с увеличением частоты увеличивается и переменная составляющая напряжения трения. Описанные эксперименты [6, 33] показали, что волны давления, возникающие при переходном процессе в гидравлическом тракте с ламинарным течением, сильно искажаются (рис. 2.25). В подразд. 2.7.1 было показано, что сжимаемость слабосжимаемой капельной жидкости не влияет на напряжение нестационарного трения. Напряжения трения слабосжимаемой и несжимаемой жидкости равны. Воспользовавшись отмеченным обстоятельством, запишем уравнение движения (2.7.2) для осесимметричного нестационарного течения жидкости в размерных переменных  [c.116]


Смотреть страницы где упоминается термин Движение жидкости ламинарное пульсирующее : [c.89]   
Механика жидкости и газа Издание3 (1970) -- [ c.493 ]



ПОИСК



Движение жидкости ламинарное

Движение ламинарное

Движение по трубе вязкой жидкости ламинарное пульсирующее

Ламинарное те—иве

Пульсирующее ламинарное движение вязкой жидкости по круглой цилиндрической трубе

Ток пульсирующий



© 2025 Mash-xxl.info Реклама на сайте