Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пересечение двух плоскостей при наличии плоскости

ОСИ, которая И явится главной осью инерции. При наличии в твердом теле плоскости материальной симметрии надо одну из координатных осей направить перпендикулярно к плоскости материальной симметрии. Эта координатная ось является главной осью инерции твердого тела в точке пересечения с плоскостью материальной симметрии. При наличии главной оси инерции в данной точке твердого тела два центробежных момента инерции относительно осей, одной из которых является главная ось инерции, обращаются в нуль, и остается вычислить только третий центробежный момент инерции, не равный нулю. Так, если вдоль главной оси инерции направлена ось г, то = = 0  [c.246]


Таким образом, добавляя различные вещества в традиционное топливо, можно добиться снижения выброса в атмосферу токсичных компонент. Причем использование воды как присадки к различным топливам дает один эффект — это снижение токсичности одновременно с понижением температуры продуктов сгорания. Использование же в качестве присадки метанола или аммиака на некоторых режимах работы энергетической установки обеспечивает снижение токсичности с одновременным ростом температуры продуктов сгорания. Поэтому было бы интересно исследовать влияние комплексных присадок на токсичность и энергетические характеристики. Здесь под термином комплексные понимается смесь нескольких веществ. В топливо керосин — воздух с соотношением горючего и окислителя а==1,1 и при давлении /7=3 МПа впрыскивалась смесь аммиака и воды. Показано, что впрыск аммиака в это топливо ведет к росту содержания окиси углерода в продуктах сгорания. Добавка же воды несколько снижает темп роста содержания СО в продуктах сгорания. При этом наличие во впрыскиваемой смеси и аммиака и воды приводит к уменьшению содержания в продуктах сгорания окислов азота. На температуру продуктов сгорания эти два впрыскиваемых вещества оказывают противоположное влияние. С одной стороны, есть область, где добавка ведет к увеличению температуры, с другой стороны присадка всегда уменьшает температуру. На рис. 5 30 представлена зависимость температуры продуктов сгорания от массовых долей впрыскиваемых воды и аммиака. Кривая АВ суть линия пересечения построенной температурной поверхности плоскостью Т—То, где То — температура продуктов сгорания чистого (без присадок) топлива. К вая ОО — суть проекция ЛВ на координатную плоскость От нз снзон- Таким образом, осуществляя дозированный впрыск смесн аммиака с водой, следуя кривой температура  [c.228]

В системе на рис. 1 отрезки 1 ,. . соединяют не лежащие на одной прямой точки А, В ш D базы 1 с тремя не лежащими на одной прямой точками а, Ъ, d тела 2 так, что в каждой из указанных точек базы и тела сходятся два отрезка. Положение тела 2 относительно базы 1 характеризуется совокупностью значений Zj,. . ., Zg, так как все они являются сторонами геометрически неизменяемых (при данных значениях Z ,. . ., фигур — треугольников Aad, АВа, Bab, BDb, Dbd, ADd. При этом положение точек А, В, D на базе и точек а, Ь, d на теле должно быть определено. Структуры Z-координат характеризуются способом соединения базы и тела отрезками Z ,. . ., Z и могут быть различными. Общие требования к структурам Z-координат необходимость наличия не менее шести отрезков, соединяющих базу с телом так, чтобы была обеспечена геометрическая неизменяемость структуры, причем на базе и теле должно быть не менее трех расположенных не на одной прямой точек. При этом недопустимо пересечение в одной точке более трех отрезков, параллельность трех отрезков п пересечение трех других в одной точке, расположение всех отрезков в двух плоскостях.  [c.79]


При наличии в твердом теле оси материальной симметрии целесообразно одну из координатных осей направить по этой оси, которая и явится главной осью инерции. При наличии в твердом теле плоскости материальной симметрии надо одну из координатных осей направить перпендикулярно к плоскости материальной симметрии. Эта координатная ось является главной осью инерции твердого тела в точке пересечения с плоскостью материальной симметрии. При наличии гаавной оси инерции в данной точке твердого тела два центробежных момента инерции относительно осей, одной из которых является главная ось инерции, обращаются в нуль, и остается вычислить только третий центробежный момент инерции, не равный нулю. Так, если вдоль главной оси инерции направлена ось Z, то /гд =/гу = О и ОСТаеТСЯ вычислить только 1ху  [c.170]

На рис. 99 показана конструкция спиральных сверл с коническим и цилиндрическим хвостовиками. Сверло состоит из рабочей части 1 (включающей режущую часть 2), шейки 3 и хвостовика 4 с лапкой 5 (или поводком 6). Элементы рабочей части спирального сверла показаны на рис. 100. Сверло имеет две главные режущие кромки 1, образованные пересечением передних 2 (винтовые поверхности канавки 7, по которым сходит стружка) и задних 3 (поверхности, обращенные к поверхности резания) поверхностей и выполняющие основную работу резаиия поперечную режущую кромку 4, образованную пересечением обеих задних поверхностей, и две вспомогательные режущие кромки 5, образованные пересечением передней поверхности с поверхностью ленточки 6. Вспомогательные режущие кромки 5 принимают участие в резании на длине, определяемой величиной подачи. Ленточка 6 сверла — узкая полоска на шего цилиндрической поверхности, расположенная вдоль винтовой канавки она обеспечивает направление сверла при резании. Благодаря наличию двух спиральных канавок сверло имеет два зуба 8 со спинками 9. Угол наклона винтовой канавки ю — угол между осью сверла и касательной к винтовой линии по наружному диаметру сверла. Обычно этот угол берется в пределах 18—30°. Угол наклона поперечного режущего лезвия т] — острый угол между проекциями поперечной и главной режущих кромок на плоскость, перпендикулярную к оси сверла. Обычно этот угол равен 50—55°, Угол при вер-ш1ше 2ф — угол между главными режущими кромками. Этот угол при сверлении стали средней твердости равен 116—120°, твердых сталей — 125°. Передний угол у — угол между касательной к передней поверхиости в рассматриваелюй точке режущей кромки и нормалью в той же точке к поверхности вращения режущей кромки вокруг оси сверла. Передний угол рассматривается в плоскости АА,  [c.137]

При заданных ри Vi уравнение (85,9) или (85,10) определяет зависимость между рг и V 2- Об этой зависимости говорят как об ударной адиабате или адиабате Гюгонио (W. J. Rankine, 1870 Н. Hugoniot, 1885). Графически она изображается (рис. 53) в плоскости р, V кривой, проходящей через заданную точку р, Vi, отвечающую состоянию газа 1 перед ударной волной эту точку ударной адиабаты мы будем называть ее начальной точкой. Отметим, что ударная адиабата не может пересечь вертикальной прямой V =i/ нигде, кроме только начальной точки. Действительно, наличие такого пересечения означало бы, что одному и тому же объему соответствуют два различных давления, удовлетворяющих уравнению (85,10). Между тем, при V[==V2 имеем из (85,10) также и 61=62, а при одинаковых объемах и энергиях давления тоже должны быть одинаковыми. Таким образом, прямая V = Vi делит ударную адиабату на две части, из которых каждая находится целиком по одну сторону от этой прямой. По аналогичной причине ударная адиабата пересекает только в одной точке pi, Vi) также и горизонтальную прямую р — р.  [c.457]


Начертательная геометрия 1963 (1963) -- [ c.0 ]



ПОИСК



Пересечение

Пересечение двух плоскостей

Пересечение плоскостей



© 2025 Mash-xxl.info Реклама на сайте