Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Цепочка точечных вихрей

В частности, для периодической цепочки точечных вихрей с одинаковыми цир-  [c.292]

Эта сумма равна гиперболическому котангенсу. В результате получим комплексную скорость, которую индуцирует бесконечная цепочка точечных вихрей, размещенных на оси ординат (рис. 4.12)  [c.72]

Рассмотрим моделирование высокочастотного периодического возбуждения плоского турбулентного сдвигового слоя [6.26] на основе разновидности метода дискретных вихрей (метод вихря в ячейке) с использованием двумерных уравнений Эйлера. Изучалось развитие слоя смешения во времени. Конечная толщина сдвигового слоя моделировалась четырьмя параллельными цепочками точечных вихрей, поперечное расстояние между которыми выбиралась из условия, чтобы осредненный по продольной координате профиль скорости в поперечном сечении  [c.161]


Фиг. 21. Бесконечная цепочка точечных вихрей. Фиг. 21. Бесконечная цепочка точечных вихрей.
Ограничимся одной из простейших моделей гидродинамического течения — периодической цепочкой точечных вихрей. Подобные цепочки моделируют периодические распределения завихренности, возникающие в сдвиговых слоях в результате развития неустойчивостей [21]. Такая цепочка в свою очередь неустойчива, при этом наибольшим инкрементом обладают возмущения удвоенного периода. Эти возмущения приводят к тому, что образуются две цепочки, двигающиеся друг относительно друга. Воспользовавшись хорошо известными результатами  [c.509]

Одна вихревая цепочка. Рассмотрим бесконечный ряд точечных вихрей, расположенных на одной прямой на одинаковом расстоянии I друг от друга и имеющих одинаковую интенсивность Г.  [c.208]

Движение периодических цепочек и решеток из точечных вихрей  [c.161]

Задачи нелинейной теории крыла, рассматриваемые в настоящей монографии, решаются численным методом дискретных вихрей (МДВ), в котором используются следующие вихревые элементы. В теории кры ла бесконечного размаха применяются в качестве основных тетечны вихрь tFl erio4Ka точечных вихрей с постоянной циркуляцией. Точечный вихрь используется при решении задачи об обтекании изолированного профиля (см. главу 4), профиля с механизацией (см. главу 5), а также системы произвольно расположенных в пространстве профилей (см. г.паву 6). При решении задачи об обтекании решетки профилей (см. главу 7) целесообразно использовать с точки зрения экономичности применения вычислительных средств цепочку точечных вихрей с постоянным шагом Л.  [c.30]

В качестве примера сложения плоскопараллельных потоков рассмотрим поле скоростей, которое создаёт бесконечная цепочка точечных вихрей одинаковой интенсивности, расположенных на одной прямой, называемой осью депочки, на равных расстояниях друг от друга ) (фиг. 21). Обозначим расстояние между двумя соседними вихрями цепочки через i и будем считать, что кан дый вихрь индуцирует циркуляционное движение с  [c.57]

Большой интерес представляют стационарные движения п точечных вихрей, когда расстояния между ними не меняются система вихрей как твердое тело движется поступательно, либо вращается с постоянной угловой скоростью вокруг их общего центра завихренности. К сожалению, эта алгебраическая задача представляет значительные трудности даже в случае равных интенсивностей вихрей. Дж. Дж. Томсон в 1883 г. исследовал частный случай, когда вихри расположены в вершинах правильного и-угольника. Он нашел, что такое стационарное вращение устойчиво при и < 6 и неустойчиво при и > 7. В работе Л. Кемпбела [65] доказано существование устойчивых стационарных вращений при всех значениях и и с помощью численных расчетов составлен каталог устойчивых равновесных конфигураций для п < 50. Оказывается, вихри расположены на одной или нескольких концентрических окружностях ( атомных оболочках , по терминологии Кельвина). В работах [56, 63] обнаружены неподвижные устойчивые конфигурации п вихрей, когда п является квадратом целого числа. К сожалению, и эта задача еще далека от полного решения. Имеются важные (с точки зрения приложений) примеры стационарных движений бесконечного числа точечных вихрей (например, цепочки Кармана см. [42], 156).  [c.32]



Смотреть страницы где упоминается термин Цепочка точечных вихрей : [c.366]    [c.161]    [c.17]    [c.162]   
Прикладная газовая динамика Издание 2 (1953) -- [ c.57 ]

Введение в теорию колебаний и волн (1999) -- [ c.509 ]



ПОИСК



Вихрь

Вихрь точечный

Движение периодических цепочек и решеток из точечных вихрей

Цепочка сил



© 2025 Mash-xxl.info Реклама на сайте