Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фермы нелинейное поведение

Рассмотрим задачу об устойчивости простейшей фермы Мизеса (рис. 16.13), позволяющую учесть геометрическую нелинейность и выявить ее влияние на устойчивость. В качественном отношении рассматриваемая ферма отражает поведение арки или пологой оболочки.  [c.362]

Фермы, напряжения, обусловленные изменением температуры 35 —, нелинейное поведение 35, 495, 504, 518, 527  [c.664]

Пусть Щ - сжимающие усилия в стержнях Е - модуль Гука прт растяжении F,Ji — площадь и моменты инерции поперечных сечший стержней / — длина стержней. Оговоримся сразу, что наша основная цель при рассмотрении этой задачи - получить систему нелинейных уравнений, позволякицую продемонстрировать эффективность различных ф01 и метода продолжения. Поэтому мы не бУдем стремиться к слишком точному описанию поведения фермы. В частности, мы не будем учитывать изменений углов между стержняш при опускании узла фе] 1ы. С учетом этого  [c.48]


При изучении сложных нелинейных процессов, поддающихся исследованию ана дитическими методами с большим трудом, ЭВМ позволяют провести большие чис ленные эксперименты с целью проверки или выдвижения гипотез о качественной или количественной стороне нелинейного явления. Обнаруженная эвристическим путем на ЭВМ закономерность может служить источником новых аналитических разработок и исследований. Такое применение ЭВМ привлекало внимание многих ученых уже с самого начала появления ЭВМ. Так, одна из первых ЭВМ была использована Ферми и Уламом [32] с целью исследования распределения энергии по частотам в нелинейных волновых процессах. Ими было обнаружено аномальное, сохраняющееся длительное время, распределение энергии по первым основным частотам. Полное аналитическое исследование этого факта отсутствует и в настоящее время. С помощью ЭВМ был об-наружен и целый ряд других очень интересных и необычных эффектов в нелинейных процессах. Упомянем в этой связи образование странных аттракторов — сложных предельных многообразий нелинейных динамических систем, к которым приближа ются со временем траектории динамической системы [33], открытие так называемого Т-слоя в плазме, неожиданно образуюпдегося при разлете плазменного шнура. Такой Т-слой характеризуется аномально высокой температурой [34]. С помощью ЭВМ в последнее десятилетие было сделано удивительное открытие о количественной уни версальности поведения широкого класса нелинейных систем уравнений, зависящих от параметра, в процессе ветвления решений при изменении параметра, когда число решений может неограниченно расти с удвоением периода. Оказалось, что две посто янные а = 4.6692. .. и Л = 2.5029. .. характеризуют переход к хаотическому поведе нию решений очень широкого класса нелинейных систем уравнений [35]. Аккуратное аналитическое обоснование этого факта еще ждет своих исследователей.  [c.24]

Вот как вспоминает о начале этих работ Станислав Улам [117] После войны, во время одного из своих частных посещений Лос-Аламоса, Ферми заинтересовался развитием и потенциальными возможностями электронных вычислительных машин. Он неоднократно обсуждал со мной характер будущих задач, которые можно было бы решать с помощью таких машин. Мы решили подобрать ряд задач для эвристической работы, когда в отсутствие замкнутых аналитических решений экспериментальная работа на ЭВМ, возможно, помогла бы понять свойства решений. Особенно плодотворным это могло бы оказаться в случае задач, касающихся асимптотического — долговременного или глобального — поведения нелинейных физических систем... Решение всех этих задач послужило бы подготовкой к установлению, в конечном счете, модели движений системы, в которой должно было бы наблюдаться смешивание и турбулентность . Целью всего этого явилось получение скоростей смешивания и термализация в надежде, что результаты расчета смогут дать намеки на будущую теорию. Пожалуй, можпо высказать догадку, что одна из побудительных причин такого выбора задач идет от давнего интереса Ферми к эргоднческой теории... .  [c.141]


Может показаться естественным, что если уже поведение системы с малым числом степеней свободы может быть сложным, то система с бесконечным числом степеней свободы заведомо должна демонстрировать случайное поведение. Однако в общем случае это не так. В свое время была выдвинута гипотеза о том, что в системах с очень большим числом степеней свободы наличия даже слабой нелинейности достаточно, чтобы энергия, запасенная в отдельных степенях свободы, распределилась по всем модам и таким образом установилось термодинамическое равновесие. Для поддержания этих представлений в конце 40-х годов была проведена серия численных экспериментов с моделями нелинейных цепочек из большого числа частиц, но термализации не обнаружилось — система периодически возвращалась в состояние с начальным распределением энергии (парадокс Ферми-Паста-Улама). В действительности нелинейные волновые системы бывают двух типов — интегрируемые (или близкие к ним), они демонстрируют лишь простое периодическое или квазипериодическое поведение, и неинтег-рируемые. Неинтегрируемые системы при достаточно большой начальной энергии стохастизуются. По случайному стечению обстоятельств цепочка, с которой работали Ферми, Паста и Улам, при выбранных ими значениях параметров оказалась близкой к интегрируемой.  [c.15]


Смотреть страницы где упоминается термин Фермы нелинейное поведение : [c.230]   
Механика материалов (1976) -- [ c.35 , c.495 , c.504 , c.518 , c.527 ]



ПОИСК



Поведени

Поведение нелинейное

Ферма

Ферми

Фермий



© 2025 Mash-xxl.info Реклама на сайте