Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эвтектика карбидная — зависимость

Эвтектика карбидная — зависимость от массы слитка и степени уковки 496  [c.567]

Первичная структура, т. е. структура металла шва, возникшая при затвердевании сварочной ванночки, в зависимости от химического состава и условий первичной кристаллизации жидкого металла может быть однофазной (аустенитной) или двухфазной. Типичная однофазная структура сварного шва аустенит-лой стали и аустенитного сплава показана на рис. 22, а и б. Сварной шов может иметь двухфазную первичную структуру следуюш,их типов аустенитно-ферритную (рис. 22, в) или фер-ритно-аустенитную (рис, 22, г), представляюш,ую собой смесь кристаллов аустенита у и первичного феррита б аустенитно-карбид-ную (рис. 22, д), представляющую собой аустенит и первичные карбиды к эвтектического (ледебуритного) происхождения аустенитно-эвтектическую с эвтектической составляющей не карбидного характера. Появление эвтектической фазы Э может быть вызвано серой, фосфором (рис. 22, ж), кремнием, цирконием, ниобием, титаном, бором (рис. 22, в) и другими легирующими элементами, которые способны образовывать эвтектику с основными составляющими шва (железом, никелем, хромом) или друг с другом. Сварные швы могут иметь и более сложную, например т р е х -фазную, первичную структуру у + S + Э.  [c.98]


При сварке углеродистых и низколегированных сталей не представляется возможным установить прямую зависимость между структурой шва и образованием треш,ин. Известно, что в сварных швах этих сталей горячие трещины вызываются либо серой, либо легкоплавкими карбидными эвтектиками. Поэтому влияние легирующих примесей на трещинообразование обычно рассматривается только в связи со способностью этих элементов к карбидо-образованию или к связыванию серы в тугоплавкие сульфиды.  [c.190]

Металлографическое исследование показало, что структура такого слоя состоит из высоколегированного хромом и марганцем аустенита и карбидной эвтектики. Измерениями было установлено, что карбидная эвтектика имеет микротвердость Я 1069, аусте-нит Н 464, а основной металл (сталь 35Л) в зоне термического влияния Н 254. В зависимости от температуры нагрева при наплавке в зоне термического влияния образуются следующие структурные участки неполного расплавления, перегрева, нормализации и неполной перекристаллизации (рис. 155, а). Эта зона распространяется на глубину до 10 мм, т. е. примерно в 2 раза меньше, чем при обычной газовой сварке. Участок неполного расплавления практически неразличим и сливается с участком наплавленного металла.  [c.272]

Рис. 81. Изменение размера ячейки карбидной эвтектики в зависимости от массы отливКи (цифры на кривых соответствуют массе отливок) Рис. 81. <a href="/info/169075">Изменение размера</a> ячейки <a href="/info/125057">карбидной эвтектики</a> в зависимости от массы отливКи (цифры на кривых соответствуют массе отливок)
В присутствии легирующих компонентов снижается способность аустенита растворять углерод. Это означает, что в зависимости от содержания легирующих и в сталях, содержащих <2% С, может появиться ледебурит (карбидная эвтектика). Это подтверждает, впрочем, структурная диаграмма охлажденных на воздухе Fe—Сг—С сплавов (рис. 91). Влияние других карбидообразующих компонентов на содержание углерода, вызывающего образование ледебурита (карбидной эвтектики), и на положение эвтектоидной точки S показано -на рис. 92.  [c.99]

При высоком содержании марганца в металле шва в присутствии углерода возможно возникновение кристаллизационных трещин, вызванных легкоплавкой карбидной эвтектикой. В связи с этим в зависимости от концентрации марганец оказывает двойственное влияние на стойкость швов против образования кристаллизационных трещин. Так, например, для швов, содержащих 0,10—0,12% С, повышение содержания марганца до 2,5% оказывает положительное влияние на стойкость металла шва против образования трещин. Повышение содержания марганца от 2,5 до 4% не оказывает влияния, а дальнейшее повышение его содержания уменьшает стойкость металла шва против образования трещин. При повышении содержания углерода в металле шва полезное влияние марганца сказывается в более узких пределах концентраций. Так, при содержании 0,13—0,2% С полезное влияние марганца отмечается при содержании его до 1,8%.  [c.233]


Наплавленный металл типа Е — хромистые стали — в зависимости от содержания углерода и хрома имеет ферритную, полу-ферритную и аустенитно-мартенситную микроструктуру. При содержании более 1,0% Си более 10% Сг в структуре появляется карбидная эвтектика (ледебурит). По своей структуре и свойствам такие стали приближаются к доэвтектическим высокохромистым чугунам.  [c.740]

Прочность самой г -фазы и, следовательно, упрочняемых ею сплавов зависит от температуры. В зависимо< ти от химического состава предел текучести у -фазы достигает пиковых значений при 704-760 °С. Выше этих температур прочность у -фазы снижается, а содержащие ее сплавы проявляют склонность к быстрой потере прочности по мере того, как температура приближается к 980 °С. Для столь высоких температур разработаны другие механизмы упрочнения, позволяющие обойтись без участия выделений у -фазы, образующихся по реакции старения. С этой целью исследованы процессы направленной кристаллизации эвтектик, содержащих такие фазы, как NijAl, Nij o, ТаС и rj j. После направленной кристаллизации эти структуры в идеале состоят из параллельных друг другу равномерно распределенных в объеме матрицы интерметаллидных или карбидных волокон. Для некоторых сплавов провели дополнительное легирование, чтобы упрочнить эту матрицу старением по у -фазе. Эти материалы обладали хорошей длительной прочностью при высоких температурах, но их промышленное применение сдерживалось необходимостью сохранять низкие скорости кристаллизации, необходимые для получения оптимальной морфологии волокон.  [c.335]

Отпуск мартенсита следует осуществлять сразу же после закалки во избежание стабилизации остаточного аусте-дита Оптимальные температуры отпуска разных сталей указаны в табл 46 Выдержка при каждом отпуске 1 ч, а последующее охлаждение следует проводить до комнатной температуры в целях более полного превращения остаточ ного аустенита в мартенсит На рис 219 указан трехкратный отпуск В зависимости от количества остаточного аустенита и типа инструмента количество отпусков может быть от двух до четырех Последний отпуск иногда совмещают с цианированием (насыщение поверхности азотом и углеродом), которое проводят в цианистых солях при отп После отпуска проводят контроль твердости, затем следует окончательная шлифовка (заточка) инструмента Для снятия возникших при этом напряжений инструмент иногда подвергают низкотемпературному отпуску (200—300 °С) Термомеханическая обработка быстрорежущих сталей разработана для некоторых видов инструмента Однако на не получила должного развития НТМО мало пригод ла из за низкой пластичности сталей и необходимости использовать мощное оборудование для деформации, а ВТМО взоможна только при скоростном нагреве и дефор мации и находит применение при изготовлении мелкого инструмента методом пластической деформации, например сверл, продольно винтового проката (И К Купалова) Карбидная неоднородность представляет со- ой сохранившиеся участки ледебуритной эвтектики в про катном металле (рис 220, с) Она определяется прежде всего металлургическим переделом, а именно кристаллизацией слитка и его горячей пластической деформацией Сильная карбидная неоднородность значительно уменьшает прочность, вязкость и стойкость инструмента Уменьшение карбидной неоднородности достигается комплексом мероприятий при металлургическом переделе Радикальным способом устранения карбидной неоднородности является  [c.374]

Растяжение. Томсон и др. [61] проводили испытания эвтектического сплава (Со, Сг) — (Сг, 00) 03 на растяя ение при комнатной и повышенной температурах в направлениях под углом 90 и 45° к оси роста эвтектики. Прочность материала для этих ориентаций в зависимости от температуры сравнивается с прочностью в продольном направлении (рис. 33). Прочность материала в направлениях, отличающихся от осевого, значительно ниже, чем в том случае, когда волокна параллельны оси прикладываемого напряжения. При температурах ниже 1000° С вредное влияние на пластичность для неосевых направлений оказывают трещины, которые зарождаются на карбидах и распространяются вдоль карбидной фазы.  [c.152]

Сталь карбидного класса применяется для изготовления инструмента. Вследствие высокого содержания углерода и очень большого количества карбидообразующих элементов в ее структуре присутствует много карбидов. В литом состоянии структура этой стали содержит карбидную эвтектику — ледебурит. Основная структура стали карбидного класса зависит от степени легированности аустенита, которая изменяется в зависимости от температуры нагрева. При низкой температуре нагрева, как только перейдена критическая точка, растворение карбидов замедляется, структура после охлаждения на воздухе получается сорбитообразной с большим количеством избыточных карбидов. Более высокий нагрев ведет к растворению карибдов и получению после охлаждения на воздухе мартенситной структуры. Еще более высокий нагрев может вызвать в высоколе-  [c.296]



Смотреть страницы где упоминается термин Эвтектика карбидная — зависимость : [c.198]    [c.91]    [c.496]    [c.79]   
Ковка и штамповка Т.1 (1985) -- [ c.0 ]



ПОИСК



Карбидная эвтектика

Эвтектика

Эвтектика карбидная — зависимость массы слитка и степени уковки



© 2025 Mash-xxl.info Реклама на сайте