Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение (см. также Поток) квазистационарное

С общей точки зрения процесс конденсации может быть разделен на периоды образования ядер конденсации критического размера, их роста и агломерации. Скорость образования ядер конденсации капли была рассмотрена в предыдущих параграфах. Теперь рассмотрим процессы, происходящие с каплями критического размера, которые уносятся потоком. При этом совершенно безразлично, возникли ли эти капли в результате самопроизвольного образования ядер или в результате присутствия посторонних инородных частиц. Законы роста капель рассмотрим для чистых паров, предполагая, что термодинамическое состояние окружающей среды не меняется во время роста капель, т. е. что процесс роста квазистационарный. Кроме того, будем иметь в виду, что вывод производится для роста единичной капли, хотя в действительности полученные результаты верны только в среднем для большого числа частиц, так как при выводе применяются статистические законы молекулярного движения. При выводе законов роста капель необходимо знать также скорость капель относительно пара. Если скорость капель значительно меньше скорости потока, то в результате сопротивления их энтропия будет увеличиваться, что существенно усложнит вывод. Поэтому вначале предположим, что капли движутся с той же скоростью, что и окружающий газ. В дальнейшем специально оговорим, для каких процессов это предположение справедливо и когда следует учитывать в расчетах рост энтропии капель, отстающих от основного потока.  [c.39]


Прн ускоренном движении на участке гидродинамической стабилизации в каналах касательное напряжение и коэффициент гидравлических потерь больше квазистационарных, а при замедлении — меньше [169]. Длина участка стабилизации при этом также меняется в соответствии с изменением скорости потока.  [c.45]

Силы жидкостного трения характеризуются касательными напряжениями, возникающими в рабочей среде на поверхностях элементов регулирующих устройств. Если поверхность одного элемента отделена от поверхности другого зазором, заполненным рабочей средой, то касательные напряжения могут быть вызваны как относительным движением этих поверхностей, так и движением среды под действием перепада давления. В предположении ламинарного режима движения среды для зазора с параллельными стенками, без учета начального участка потока, сила жидкостного трения Ртр может быть определена, если воспользоваться уравнением (9.116). При установившемся движении среды, а также при тех видах неустановившегося движения, для которых выполняются сформулированные в 9. 9 условия квазистационарности течения, это уравнение принимает вид  [c.263]

Эпюра скорости и соответственно напряжение трения на стенке при нестационарном течении жидкости заметно отличаются от соответствующих характеристик стационарного течения (см. подразд. 2.7, а также работы [6, 7, 26, 35]). Следствием этого отличия является зависимость у и от частоты колебаний или градиента измерений параметров потока и предыстории развития его во времени. В некоторых случаях при низких частотах колебаний или незначительном градиенте параметров потока эпюры скорости мало отличаются от стационарных и можно использовать квазистационарное приближение, т. е. в уравнение нестационарного движения (2.121) можно подставить значения у и для стационарного течения со средней скоростью, равной ее мгновенному значению. Однако при достаточно высоких значениях частот колебаний или при большом градиенте параметров во времени квазистационарное приближение, как будет показано далее, не позволяет получить достоверных данных о значении напряжения, а значит и диссипации энергии в потоке жидкости. Для получения достаточно точных моделей нестационарного течения необходимо учитывать зависимость напряжения трения или других эквивалентных характеристик от частоты и градиента параметров во времени.  [c.67]


Движение тел в газах с большими сверхзвуковыми скоростями сопровождается интенсивным аэродинамическим нагреванием обтекаемой поверхности и ее термохимическим и/или термомеханическим разрушением. В общем случае возникает сложная задача совместного решения уравнений газовой динамики с учетом физикохимических процессов в потоке газа и толще материала стенки тела и уравнений движения тела по траектории с переменными коэффициентами аэродинамических сил и моментов, а также с переменными геометрическими размерами и массой. В случае умеренной интенсивности разрушения оказывается возможным существенно упростить проблему, считая обтекание квазистационарным при этом аэродинамические коэффициенты и процесс разрушения поверхности определяются мгновенными значениями параметров движения и состояния тела. Однако и в этом случае задача об изменении формы тела за счет уноса материала в точной постановке содержит в качестве составных элементов несколько самостоятельных задач математической физики (обтекания тела, определения тепловых потоков через пограничный слой, распространения тепла в теле и т.д.) для замкнутых групп уравнений, связанных между собой через граничные условия. Математические свойства таких комплексных задач еще мало исследованы, и обозримые результаты получены лишь при использовании ряда существенно упрощенных математических моделей.  [c.188]


Смотреть страницы где упоминается термин Движение (см. также Поток) квазистационарное : [c.356]   
Механика жидкости и газа (1978) -- [ c.545 ]



ПОИСК



Движение (см. также Поток)

Движение квазистационарное

Поток—см. Движение



© 2025 Mash-xxl.info Реклама на сайте