Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конечные элементы слоистых пластинах

Слоистые пластины с наполнителем довольно широко используются в качестве конструкционных материалов. Напряжения в таких пластинах рассчитываются методом конечных элементов.  [c.72]

Сравнение величин, предсказываемых этой теорией, с экспериментальными данными привело к выводу, что необходим более точный анализ податливости при поперечном сдвиге, чем в КТСП, и поэтому многие исследователи делали попытки совместить в конечном элементе пластины влияние поперечных сдвигов, учитываемое в теории Тимошенко— Миндлина, с моделью однородной слоистой пластины.  [c.419]


Пока достаточно отметить, что метод конечных элементов особенно хорош при решении задач со сложными жесткостными свойствами материала. Из дальнейшего будет видно, что матрица [Е (или обратная к ней матрица) легко обрабатывается в алгоритмах численного интегрирования. Ограничения, накладываемые на сложность и представления жесткостных характеристик материала, часто диктуются практикой для большинства практических за ач трудно располагать большей информацией о механических характеристиках материала, чем полученной в результате эксперимента информацией о зависимости напряжений от деформаций для орто-тропного материала в двумерном случае. Исключение составляют слоистые пластины с ортотропными слоями (механические характеристики слоев можно определить экспериментально, а затем вычислить характеристики всей слоистой пластины) и композитные материалы (например, стекло-волокнистые композиты). Благодаря особой роли композитов как ортотропных материалов, прихменяе-мых на практике, публикации, касающиеся их разработки и использования, представляют отличный источник информации для детального построения вполне общих соотношений, задающих жест-костное поведение материала (см. [4.81).  [c.118]

Итак, переход от классической модели деформирования слоистых тонкостенных пластин к той или иной корректной уточненной модели сопровождается увеличением не только порядка системы дифференциальных уравнений, но и спектрального радиуса матрицы ее коэффициентов и, как следствие, появлением быстропеременных решений, имеющих ярко выраженный характер погранслоев и описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвигов и обжатия нормали. Такая ситуация характерна не только для балок или для длинных прямоугольных пластинок, изгибающихся по цилиндрической поверхности, но, как будет показано ниже, и для элементов конструкций других геометрических форм — цилиндрических панелей, оболочек вращения и др. Отметим, что стандратные методы их решения, которые согласно известной (см, [283 ]) классификации делятся на три основные группы (методы пристрелки, конечно-разностные методы, вариационные методы, метод колло-каций и др.), на этом классе задач малоэффективны. Так, группа методов пристрелки, включающая в себя, в частности, широко используемый и весьма эффективный в задачах классической теории оболочек метод дискретной ортого-нализации С.К. Годунова [97 ], на классе задач уточненной теории оболочек оказывается практически непригодной. Методами этой группы интегрирование краевой задачи сводится к интегрированию ряда задач Коши, формулируемых для той же системы уравнений. Для эллиптических дифференциальных уравнений теории оболочек такие задачи некорректны (см., например, [1]), что при их пошаговом интегрировании проявляется в форме неустойчивости вычислительного  [c.109]



Смотреть страницы где упоминается термин Конечные элементы слоистых пластинах : [c.5]    [c.286]   
Вариационные методы в теории упругости и пластичности (1987) -- [ c.419 ]



ПОИСК



Конечный элемент

Пластины слоистые

Элементы для пластин



© 2025 Mash-xxl.info Реклама на сайте