Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Собственные частоты пластин — Уравнения 157 — Частоты и формы

В предыдущем разделе была рассмотрена дискретная система (система с конечным числом степеней свободы). Такие системы являются удобными моделями, позволяющими наиболее просто исследовать их динамику. Любая упругая система (стержни, пластинки, оболочки и их сочетание) является системой с бесконечно большим числом степеней свободы (системы с распределенными параметрами) и ее движение описывается уравнениями в частных производных, что несколько затрудняет их исследование. Собственно, если решение ищется в виде разложения по главным формам колебаний, то все осложнения заключаются в определении форм собственных колебаний и если частоты собственных колебаний близки между собой, а для упругих систем типа пластин и оболочек они могут оказаться близкими в учете взаимной корреляции между формами колебаний.  [c.79]


Задачи об определении частот и форм собственных колебаний пластин и оболочек приводят к необходимости интегрирования дифференциальных уравнений в частных производных. Наиболее хорошо изучены те случаи, когда оказывается возможным разделение переменных. К ним относятся, в частности, колебания прямоугольной пластины, шарнирно опертой по противолежащим сторонам, зонтичные и веерные колебания круглых осесимметричных пластин, колебания цилиндрических оболочек, замкнутых или шарнирно закрепленных вдоль образующих.  [c.244]

Вопрос о необходимости учета перемещений в невозмущенном состоянии при составлении уравнений возмущенного движения был поставлен Г. Ю. Джанелидзе и В. В. Болотиным (1956). Было установлено, например, что в задаче об устойчивости прямолинейной формы стержня, снсатого периодической продольной силой, возможны явления неустойчивости при частоте внешней силы, близкой к частоте собственных продольных колебаний стержня. Большое число задач об устойчивости стержней, стержневых систем, пластин и оболочек было решено с учетом перемещений в невозмущенном состоянии. Дальнейшие исследования были выполнены Г. В. Ми-шенковым (1961), В. Ц. Гнуни (1961) и другими. В последней работе было показано, что учет перемещений в невозмущенном состоянии может расширить границы области неустойчивости для пологой панели на несколько десятков процентов.  [c.355]


Смотреть страницы где упоминается термин Собственные частоты пластин — Уравнения 157 — Частоты и формы : [c.488]   
Вибрации в технике Справочник Том 1 (1978) -- [ c.203 , c.218 ]



ПОИСК



195 — Собственные частоты 195 — Уравнения

283 — Уравнения Формы собственные

425 — Уравнения пластин

Собственная форма

Уравнение частот

Уравнения форме

Форма уравнением в форме

Формы и частоты собственны

Частота собственная



© 2025 Mash-xxl.info Реклама на сайте