Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформация двойникованием теория

Для пластической деформации скольжением и двойникованием общим являются их дислокационный механизм и однородность деформации. Геометрия и дислокационная модель скольжения объясняют поворот осей кристалла в процессе деформации. Теория пересечения двойника скользящей дислокацией — перегибы на двойниковой границе и ее искажение, при этом общим здесь является однородность деформации по всему кристаллу во время скольжения или в двойниковой прослойке при двойниковании. Однако в деформированных кристаллах распределение дислокаций неравномерное, а возникающие дислокационные сетки и субграницы при избытке дислокаций одного знака приводят к микроскопической неоднородности, создавая локальную разориентировку, достигающую нескольких градусов. При простейших видах деформации (растяжение, сжатие) возникают значительные разориентировки. Для неоднородных и неравномерных полей напряжений и деформаций в макромасштабе (прокатка, кручение, изгиб, прессование и т. п.) появление существенной разориентировки неизбежно.  [c.148]


Можно считать установленным, что пластические сдвиги, возникающие в металле под действием циклической нагрузки, приводят к наклепу и перераспределению напряжений как между зернами, так и внутри самих зерен. Наклеп для многих металлов сопровождается увеличением твердости. Пластическая деформация накапливается в результате скольжения и двойникования вдоль тех же кристаллографических плоскостей и по тем же направлениям, что и при действии статических нагрузок. И. А. Одинг дополнил эту теорию, обратив внимание на то, что циклические повторяющиеся напряжения вызывают в металле два одновременно протекающих явления упрочнение и разупрочнение Л. 31]. Упрочнение связывается с наклепом и старением, а разупрочнение — с появлением напряжений второго рода, искажений третьего рода, дроблением кристаллов на блоки.  [c.159]

Для решения проблемы пластичности кристаллов принципиально важен анализ их сдвиговой устойчивости. Долгое время оя. ограничивался рассмотрением влияния сдвиговой устойчивости решетки на характеристики дислокаций (энергию дефекта упаковки, степень расщепленности дислокаций), характер их движения, формирование дислокационной структуры, переход от дислокационного механизма деформации к двойникованию, формированию мартен-ситных ламелей. Указанные аспекты играют фундаментальную роль в дислокационной теории пластической деформации металлов и сплавов.  [c.6]

Несмотря на возрастающее сомнение [7, 9, 10, 151 в возможности построения хорошей физической теории пластичности для больших пластических деформаций путем изучения свойств индивидуальных дефектов, генетическая связь закономерностей структурообразования с этими свойствами для различных ОЦК металлов и сплавов на их основе несомненна. Так, ряд отличий в структурообразовании ОЦК по сравнению, например с ГЦК металлами, обусловлен существованием резкой температурной зависимости критического сопротивления сдвигу, приводящей к повышению плотности дислокаций с понижением температуры при одинаковых степенях деформаций или проявлению деформационного двойникования.  [c.197]

Отметим, что пластическая деформация может осуществляться различными копкурир1ующими механизмами трансляционным сколь кением, двойникованием. Объяснить причины зарождения того или иного вида пластической деформации можно с помощью теории сред с микроструктурой.  [c.98]

Плоскость двойникования и направление двойникования, удовлетворяюш ие критерию Боулза — Маккензи, совпадают с предполагаемыми элементами механического двойникования. Более примечательным примером является мартенситное превра-ш ение в сплавах золото — кадмий как установлено, конечная фаза в этом случае представляет собой пакет тонких двойников с плоскостью двойникования типа 111 ромбической решетки, а направление двойникования, как и предсказывает кристаллографическая теория, является иррациональным. Как уже указывалось, самые простые предположения относительно S в ряде мар-тенситных превраш,ений приводят к весьма хорошему совпадению между, теоретическими и экспериментальными данными, в других же случаях это не так. Изменение теоретических результатов можно получить, либо меняя элементы S, либо отказываясь от условия, что полное изменение формы является деформацией с инвариантной плоскостью.  [c.322]


Кристаллографические теории приводят к хорошему совпаде-= нию с экспериментом для мартенсита в сталях, имеющего иррациональные габитусные плоскости, близкие к 3, 10, 15), при допущении, что эквивалентная деформация при инвариантной решетке является чистым сдвигом по плоскости 112 в направлении (111) мартенсита. Келли и Наттинг [74] методом электронной микроскопии тонких фольг провели прямое исследование тонкой структуры такого мартенсита и показали, что мартенситные пластины представляют собой пакеты тонких двойников с указанными плоскостью и направлением двойникования. Аналогичные результаты были получены для мартенсита с габитусом 225 , так что более правильной является модель, показанная на фиг. 236, а не на фиг. 23а. Толщина отдельных двойников может составлять всего лишь около 20 атомных диаметров, так что рентгеновским методом выявить их невозможно. Было установлено, что и в других случаях (например, в сплавах Си — А1) продукты мартенситного превращения также состоят из очень тонких пакетов двойников, и представляется весьма вероятным, что подобную структуру имеют продукты многих мартенситных превращений ). В то же время Келли и Наттинг [74] обнаружили, что мартенсит малоуглеродистых сталей представляет собой монокристальные иглы.  [c.332]

Последующее развитие техники полностью подтвердило справедливость мнения В. Л. Кирпичева с существенными уточнениями пластичность необходима не только при наличии ударов, но часто при статических нагружениях для элементов конструкций важна прежде всего местная, а не общая пластичность полезное влияние (увеличение локального энергопоглощения) могут оказывать местные неупругие деформации разной природы, а не только пластические, например вязкие. Выход за пределы чисто упругого состояния вызывается общими или локальными явлениями, существенно повышающими энергопоглощение пластическими или вязкими сдвигами, двойникованием, диффузионными и дислокационными процессами, перемещениями вакансий и т. д. При этом существенно увеличивается скорость нарастания деформаций и соответственно возрастает величина деформации. Например, у сталей наибольшее упругое удлинение имеет величину порядка 1 % (за исключением нитевидных кристаллов, упругое удлинение которых может достигать 5% и более), в то время как наибольшая пластическая деформация достигает десятков процентов. Большинство расхождений между выводами из расчетов теории упругости и сопротивления материалов с результатами механических испытаний и опытом эксплуатации Изделий является следствием проявления неупругих состояний. Эти проявления могут быть как полезными, способствующими местному благоприятному перераспределению напряжений при выходе за пределы упругого состояния, так и вредными чрезмерная общая деформация изделий вследствие текучести и ползучести, затрудненная обработка резанием ввиду высокой вязкости, плохая прирабатываемость и наволакивание материала при трении и т. п.  [c.107]

Тип габитуса связан с видом дополнительной деформации решетки при мартеь ситном превращении. Например, теория предсказывает, чю если, такая деформация идет путем двойникования по плоскости 112 м, то габитус мартенсита должен быть I 3, Ю, 15 [ а. Образова/ние мартенсита с габитусом ] 225 [а происходит вследствие значительно более сложной дополнительной деформации, которая окончательно не выяснена.  [c.227]


Смотреть страницы где упоминается термин Деформация двойникованием теория : [c.208]    [c.316]    [c.417]   
Сплавы с эффектом памяти формы (1990) -- [ c.26 , c.27 ]



ПОИСК



Двойникование

Деформация двойникованием

Теория деформаций



© 2025 Mash-xxl.info Реклама на сайте