Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловые условия работы и математическая модель процесса

При составлении таблиц обязателен переход к безразмерной форме математической модели процесса теплопередачи. Преимущества безразмерной формы математической модели процесса теплопередачи очевидны, так как [Л. 38] решение уравнений, представленных в безразмерной форме менее трудоемко, чем решение тех же уравнений в размерном виде, поскольку число переменных сокращается. По этой же причине объем расчетной работы по безразмерным решениям будет минимальным. Использование безразмерной формы записи дифференциальных уравнений и краевых условий позволяет обобщить явления различной физической природы, поскольку для большой группы взаимосвязанных явлений переноса системы дифференциальных уравнений оказываются тождественными, а физический смысл соответствующих безразмерных коэффициентов аналогичным. Следовательно, создается возможность не только научно обосновать моделирование нестационарных взаимосвязанных процессов, но и путем моделирования исследовать, отрабатывать сложные процессы, составлять таблицы, графики и т. д. Нестационарный тепловой режим твердого тела представляет несомненный интерес для конструктора, занимающегося проектированием тепловых машин и теплообменных устройств различного назначения. В связи с отмеченным рассмотрим тепловой режим твердого тела в условиях несимметричного нагревания для граничных условий третьего рода.  [c.153]


Детерминированное математическое описание физической модели массообменных процессов в зоне технологического процесса получается упрощенным и несовершенным, прежде всего из-за трудности достоверно сформулировать граничные условия, а также выбрать и принять параметры процесса в уравнениях математического описания. Параметры делятся на характеризующие свойства материалов (теплоемкость, плотность и др.) и характеризующие явления переноса энергии и массы (теплопроводность, кинематическая вязкость и др.). Параметры первой группы, входящие в уравнения сохранения массы и энергии, обычно принимаются усредненными значениями для условий технологического процесса. Выбор параметров второй группы (констант переноса) требует особого внимания, поскольку тепловая работа печей, как отмечалось, обычно лимитируется процессами переноса. Однако до настоящего времени слабо изучены теплофизические свойства исходных материалов, особенно расплавов, что тормозит развитие теории печей. Создание общей теории позволит полностью исключить эмпирический подход в расчетах и конструировании печей (производительность, расход топлива и пр.). Анализ типовых тепловых режимов определяет оптимальные условия тепловой работы (тепло-массообмен, генерация тепла, движение газов, циркуляция расплавов и пр.) как существующих, так и проектируемых печей. В настоящее время разработаны обобщенные методы металлургических расчетов и методики составления математических моделей ряда процессов и технологических схем для ЭВМ [53]. Физико-химические закономерности в агрегатах и процессах автогенных способов плавки изучаются при помощи физического моделирования (особенно в совокупности с математическим моделированием), укрупненно-лабораторных исследований и полупромышленных испытаний [54]. Накопленный опыт позволяет оценить важность и необходимость исследований на малых установках, которые дают возможность, с одной стороны, еще до строительства промышленного агрегата решить вопросы технологического, теплотехнического и конструктивного характера, а с другой стороны, определить, какие результаты исследований можно перенести на крупный агрегат, а какие вопросы требуют уточнения или разрешения в опытно-промышленных условиях. Такую работу позволяют в широких масштабах проводить лаборатории, оснащенные современным  [c.80]


В связи с вводом значительных мощностей на атомных и тепловых электростанциях необходимо обеспечить их надежную и бесперебойную работу. Чтобы предупредить возможные неприятности в работе парогенерирующих элементов, необходимо проведение комплекса исследований по массобмену при кипении в капиллярно-пористых структурах. Для этого необходима постановка эксперимента как в условиях, максимально приближенных к действующим атомным станциям, так и в условиях, моделирующих основные черты процесса при кипении в капиллярно-пористых телах. Первые исследования позволят получить частные рекомендации с учетом конкретных конструктивных и физико-химических условий работы блоков. Вторая группа исследований поможет глубже проникнуть в существо процесса, разработать модель, получить математическое описание и выработать общие рекомендации по физико-химическим условиям работы парогенерирующих поверхностей.  [c.235]


Смотреть страницы где упоминается термин Тепловые условия работы и математическая модель процесса : [c.182]   
Смотреть главы в:

Автогенные процессы в цветной металлургии  -> Тепловые условия работы и математическая модель процесса



ПОИСК



Математическая модель процесса

Математические модели

Математические тепловые модели (МТМ)

Модели процессов

Процесс тепловые

Работа процесса

Условие работы



© 2025 Mash-xxl.info Реклама на сайте