Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Базисы косоугольных систем координат

Иногда целесообразно выбрать элементарную ячейку не примитивную, а большего объема. Это связано с тем, что примитивный параллелепипед может оказаться косоугольным, а расчеты, например, при определении структуры кристалла всегда удобнее производить не в косоугольной системе координат (ребра элементарной ячейки, как правило, принимают за оси координат), а в прямоугольной. Ясно, что выбранная в прямоугольной системе координат ячейка в отличие от примитивной помимо узлов в вершинах должна содержать дополнительные узлы, и объем такой ячейки больше объема примитивной. Сложная ячейка характеризуется координатами узлов. Совокупность координат узлов, приходящихся на элементарную ячейку, называют базисом ячейки. Обычно сложную элементарную ячейку выбирают так, чтобы дополнительные узлы находились либо в центрах граней, либо в центре объема. Ниже приводится перечень наиболее распространенных сложных ячеек.  [c.12]


Пример 1. Декартова косоугольная система координат. Построим взаимный базис. Из Рис. 1.14 видно, что вектор е перпендикулярный к вектору 62, определяется равенством  [c.32]

Косоугольные системы координат встречаются при решении задач формообразования сложных поверхностей деталей на многокоординатных станках с ЧПУ. Например, подвижный репер с началом на поверхности Д и с двумя осями, касательными к координатным линиям на поверхности, и третьей осью, направленной по нормали к поверхности Д и в общем случае неортогональны. Поэтому необходимо либо уметь по заданному косоугольному базису строить ортогональный, либо преобразовывать косоугольные координаты.  [c.179]

Напряжения (см. рис. 6.12, 6.13) следует понимать как физические компоненты — составляющие разложения тензора напряжений а по единичным векторам основного косоугольного базиса местной криволинейной системы координат а = и, a =v, а =2, в которой описана геликоидальная оболочка.  [c.196]

Задача 15. Задана плоская косоугольная декартова система координат, определяемая векторами основного базиса е,, е . Дан вектор А. Дать геометрическую интерпретацию векторов  [c.107]

Для решения поставленной задачи выберем несколько систем отсчета Во-первых, используем ортогональный лабораторный базис л , у, г. В этом базисе целесообразно записывать окончательные выражения и соответствующие операции в терминах инженерной механики пластичности, например конфигурационные тензоры деформаций г и напряжений усредненные по характерным объемам V, включающим большое количество малых участков (объемов кристалла, в которых реализуется каждый конкретный элементарный акт деформации или разрушения. Во-вторых, применим кристаллофизический базис, задаваемый тремя некомпланарными единичными векторами и, v, w, который в общем случае условимся считать косоугольным, а в практических расчетах — близким к ортогональному. В кристаллофизической системе координат такие свойства удобно выражать как тепловое расширение и упругую податливость. Справочные сведения о подобных характеристиках обычно представляют именно в кристаллофизическом базисе. В-третьих, будем широко пользоваться различными локальными базисами (которые в общем случае можно считать и неортогональными), выбирая их каждый раз так, чтобы форма записи соответствующих физических законов реализации процесса была предельно простой и понятной по содержанию. Так, если деформация осуществляется кристаллографическим сдвигом по плоскостям с нормалью п в направлении /, условимся задавать ее в базисе I, т, п, где направления I, т я п образуют тройку единичных ортогональных по отношению друг к другу векторов. Примером другой локальной системы отсчета может служить базис а, Ь, с, в котором удобно записывать условия раскрытия трещин отрыва. При этом условимся орт а ориентировать вдоль направления сдвига, инициирующего отрыв (например, по схеме Стро [2П), а вектор с — вдоль нормали к плоскости трещины. Понятно, что в этой схеме тройка единичных векторов а, Ь, с не обязательно образует ортогональный базис, а орт а может совпадать с ортом I из локальной системы сдвига. Однако базис целесообразно брать все же ортогональным.  [c.9]



Смотреть страницы где упоминается термин Базисы косоугольных систем координат : [c.11]   
Смотреть главы в:

Формообразование поверхностей деталей  -> Базисы косоугольных систем координат



ПОИСК



Базис

Координаты системы

Косоугольная система координат

Косоугольные координаты



© 2025 Mash-xxl.info Реклама на сайте