Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молибден, цирконий, бериллий и их сплавы

Молибден, цирконий, бериллий и их сплавы  [c.132]

В данном разделе рассмотрены редкие металлы, которые широко используются в чистом виде или в виде богатых ими сплавов. К ним относятся вольфрам, молибден, тантал и ниобий, ванадий, цирконий, бериллий и германий.  [c.446]

Многие материалы могут быть исследованы этим методом медь, сплавы на основе Си—N1, бронза, нержавеющие стали, цирконий, циркалой, вольфрам, молибден, свинец, бериллий и титан. Каждый вид дефектов может быть определен в соответствии с диаграммой, которая представлена на рнс. 10.57. Обычно калибровка инструмента на трубе, имеющей калибровочные дефекты, затруднена. Перегородки, поддерживающие конденсорные трубки, могут маскировать коррозию, имеющую место вблизи этих перегородок.  [c.620]


В настояш,ем разделе основное внимание уделяется никелю, цирконию, меди, бериллию, алюминию, магнию, молибдену, ниобию, танталу и вольфраму. Данные по влиянию излучения на механические свойства этих металлов и их сплавов сведены в табл. 5.6—5.13.  [c.253]

При температуре 800° С в статических условиях в литии стойки молибден, вольфрам, ниобий, армко-железо. В загрязненном азотом литии при температуре 550° С не стойки никель и его сплавы, медь, алюминиевые сплавы [1,60]. Удовлетворительной стойкостью в литии обладают тантал, цирконий, титан. Вольфрам ограниченно стоек. Низкую стойкость в литии показали кобальт, ванадий, марганец, бериллий, хром и кремний [1,49]. В качестве защитной атмосферы при испытании образцов в литии могут применяться инертные газы гелий, неон и аргон [1,59]. Радиация на скорость коррозии конструкционных материалов в расплавленных натрии и литии почти не влияет [1,61], [1,62].  [c.51]

Жаростойкость тантала повышают легированием никелем, молибденом (до 15%), вольфрамом (до 50%) (рис. 14.21). Добавки V и Nb до 15 % приводят к двукратному повышению жаростойкости тантала. Эффективны добавки металлов IV-a группы. Положительное влияние циркония усиливается при повышении температуры до 1100 °С. Сплавы Hf—Та, богатые гафнием, устойчивы кратковременно к окислению при 2000 °С. Наиболее высокой жаростойкостью обладают тройные и многокомпонентные сплавы тантала (см. табл. 14,9). Тантал, легированный хромом и никелем (суммарное.содержание Сг, Ni 15 %), окисляется со скоростью, меньшей, чем хром. Наибольшей жаростойкостью в этой системе обладает сплав Та—7,5 Сг—5Ni. Наивысшей жаростойкостью обладают сплавы тантал - металл IV-a группы, легированные хромом, алюминием, кремнием, бериллием, молибденом.  [c.430]

До настоящего времени в простом сосуде удавалось глянцевать или полировать следующие металлы алюминий и его сплавы, сурьму, серебро, висмут, кадмий, хром, кобальт, медь ч ее сплавы, олово, железо, нормальные и специальные стали, германий, бериллий, индий, магний, марганец, молибден, никель и его сплавы, ниобий, золото, свинец, тантал, торий, титан, вольфрам, уран, цинк и цирконий.  [c.251]

Сварка электронным лучом в вакууме. Этим способом сваривают тугоплавкие (тантал, ниобий, вольфрам, молибден) и легкоокисляемые (цирконий, бериллий, титан, алюминий, магний) металлы, и их сплавы. Сварка производится в вакуумной камере, где имеется остаточное  [c.329]

При испытании металлов и сплавов в ртути добавление к ним титана и магния увеличивает коррозионную стойкость первых [1,61], [1,65]. Предполагается, что окислы, образующиеся в результате взаимодействия титана и магния с кислородом, препятствуют взаимодействию металлов с ртутью. При температуре 600° С в ртути, ингибированной титаном и магнием, достаточной стойкостью обладают низкоуглеродистая сталь сталь, легированная 20% молибдена сталь, легированная 8% хрома, 0,5% алюминия и 0,3% молибдена сталь, легированная 5% хрома, 0,5% молибдена и 1,5% кремния а также вольфрам и молибден. При температуре 500°,С можно применять стали легированную 1) 5% хрома 2) 1,5% хрома и 1,3% алюминия 3) 5% хрома, 1,2% меди или 4,5% молибдена ферритные хромистые стали. Нестойки в ртути аустенитные нержавеющиестали, бериллий (при температуре300°С), тантал, ниобий, кремний, титан, ванадий, никель, хром и их сплавы, кобальт, платина, марганец, цирконий, алюминий, золото и серебро. Чтобы ингибировать ртуть, в нее достаточно ввести 10 мг1кг титана. Менее экономически выгодным ингибитором является цирконий [1,65].  [c.53]


Сплавы на кобальтовой основе ведут себя при температуре до 550° С практически так же, как и аустенитные хромоникелевые стали. Особое внимание как перспективным для использования в натриевых контурах уделяется ниобию, ванадию, бериллию, цирконию, молибдену и вольфраму. Но эти материалы весьма чувствительны к кислороду в натрии. Так, по опытам Дэвиса и Дрейкотта [224], для обеспечения скорости коррозии ниобия в несколько сотых миллиметра в год при температуре 450°С в натрии не должно быть более 0,0005 вес. % Оз. Непригодны для сколь-либо длительного применения в контурах с натрием и калием медь, магний и алюминий.  [c.282]

Применению ннобня как основы или легирующего элемента в сплавах цветных металлов уделялось и продолжает уделяться большое внимание. Изучение ряда двойных и тройных сплавов на основе ниобия с добавкой практически всех элементов периодической таблицы направлено на улучшение стойкости ниобия против окисления. Например, в работе [13.3] как компоненты двойных сплавов с ниобием исследовались следующие элементы бериллий, бор, хром, кобальт, железо, молибден, никель, кремний, тантал, титан, вольфрам, ванадий и цирконий. Наилучшая устойчивость против окисления при 1000° была получена для сплавов, содержащих около 9 вес. % хрома, 5 вес. % молибдена, 15,5 вес. % титана и 5,7 вес. % ванадия. Кинетика окисления изучалась для сплавов с хромом, молибденом, титаном, вольфрамом, ванадием и цирконием [80].  [c.463]

Реактив применяют также для травления целого ряда молибденовых сплавов [10], причем твердый раствор, как правило, не травится, а двойные интерметаллиды окрашиваются. Так, в сплавах с медью интерметаллиды окрашиваются в коричневый цвет, с молибденом— в черный (S-фаза), с цирконием — в лимонно-желтый, с бериллием — в коричневый цвет. В сплавах с кремнием можно отличить дисилицид MoSl2 от силицида MogSia. В системе молибден—алюминий интерметаллидная фаза не окрашивается.  [c.76]

Фтор, действие на бериллий 392 вольфрам 380 золото 345, 347 магний 165, 708 молибден 378 олово 339 платину 364 серебро 356 сплав железа с кремнием 106 сплавы меди 199, 216, 235 сталь 34 тантал 386 титан 387 Фтористоводородная кислота см. Плавиковая кислота Фтористый водород, действие на алюминий и его сплавы 124 свинец 328 сплавы меди 200,235 сталь 34—35 хромоникелевую сталь 52 см. также Плавиковая кислота Фтористый натрий, действие на магиий и его сплавы 145—146 серебро 356 сплавы меди с цинком 189 цирконий 389 Фумаровая кислота 894  [c.1249]

В растворах кипяш 1х солей наиболее стойки сплавы алюминия с бериллием, цирконием, титаном, хромом. Сг5лавы с кремнием, магнием, марганцем показали среднюю стойкость наименее стойкими в этих растворах были сплав с оловом, висмутом, свинцом, железом, никелем, молибденом и вольфрамом [147],  [c.77]


Смотреть страницы где упоминается термин Молибден, цирконий, бериллий и их сплавы : [c.223]    [c.5]    [c.297]    [c.1252]    [c.596]    [c.600]   
Смотреть главы в:

Основы металловедения и теории коррозии  -> Молибден, цирконий, бериллий и их сплавы



ПОИСК



Берилл

Бериллий

Бериллий и сплавы

Молибден

Молибденит

Сплавы молибдена

Циркон

Цирконий

Цирконий и сплавы

Цирконий и сплавы циркония



© 2025 Mash-xxl.info Реклама на сайте