Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ограничения метода разложения производной

Ограничения метода разложения производной  [c.288]

Выбор наилучших величин S с учетом всех видов ограничений (равенств и неравенств) в малой окрестности Zn можно осуществлять по аналогии с методами локальной аппроксимации. Простейшая линейная аппроксимация с помощью разложения в ряде Тейлора приводит к выражениям типа (П.15) для целевой функций и ограничений. Учитывая постоянство функций и частных производных, определенных в фиксированной точке Zh, и подставляя полученные выражения Но к Hj в задачу Д, получаем следующую задачу линейного программирования (назовем ее Ж)  [c.249]


Представляет интерес метод решения обратной задачи теплопроводности, изложенный в работе [268]. Предполагается, что известная из эксперимента температура внутренних точек тела является неограниченно дифференцируемой функцией времени. При таком ограничении температура остальных внутренних точек тела и поверхности, а также потоки, проникающие через поверхность, выражаются рядами, представляющими собой разложения по производным опытных функций. Коэффициенты таких разложений являются универсальными функциями геометрии тела. Они могут быть вычислены заранее для всех возможных экспериментов. Хотя точное решение обратной задачи описывается бесконечным рядом производных экспериментальных функций, сами эти функции абсолютно  [c.166]

В основе спектрального метода лежит стандартный математический аппарат, позволяющий приближенно решать дифференциальные уравнения в частных производных. Решение ищется в виде разложения по ряду базисных функций от пространственных переменных с конечным числом членов ряда п. Эффективный способ применения спектральных методов к решению нелинейных дифференциальных уравнений, описывающих гидродинамические процессы, предложен Орсегом 30]. Преимуществом спектрального метода является возможность точного удовлетворения граничных условий при правильном подборе базисных функций, впрочем, только для областей с простой геометрией. Кроме того, этот метод в определенных условиях позволяет получить более точное решение по сравнению с методом, основанным на интегрировании по контрольному объему. Однако применение спектрального метода к решению системы уравнений Навье—Стокса встречает значительные трудности. Число базисных функций п вычисляется как отношение наибольшего характерного геометрического масштаба поля течения к наименьшему. Например, в случае течения в ограниченной области пространства наибольший масштаб имеет порядок размеров этой области, а наименьший определяется толщиной вязкого слоя вблизи стенки. Для сложных пространственных задач и течения с большими числами Рейнольдса указанное отношение может быть достаточно велико. Очевидно, ошибка численного решения уменьшается с ростом числа базисных функций п. Приемлемая точность решения часто не может быть достигнута из-за непомерно возрастающего с ростом п объема вычислений. Кроме того, при применении спектрального метода ошибка решения носит глобальный характер (т.е. появление погрешности решения в какой-либо точке приводит к распространению ошибки на всю область независимых переменных). С увеличением степени нелинейности уравнений эффективность спектральных методов снижается. Поэтому спектральные методы используются в основном для исследования однородной или изотропной турбулентности или для расчета течения в областях простой формы.  [c.197]



Смотреть страницы где упоминается термин Ограничения метода разложения производной : [c.296]   
Смотреть главы в:

Методы возмущений  -> Ограничения метода разложения производной



ПОИСК



Метод разложения

Ограничения

Производная

Разложение сил



© 2025 Mash-xxl.info Реклама на сайте