Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задачи равновесия для неоднородной среды

Разрушение при ползучести. В. И. Розенблюм (1957) получил решение задачи об определении времени до разрушения диска постоянной толщины с отверстием. В основу положены уравнения установившейся ползучести, распространенные на случай конечных деформаций, таким образом, рассмотрена схема вязкого разрушения. Л. М. Качанов (1960) рассмотрел на основе своей теории некоторые задачи о времени разрушения стержневых систем, сформулировал общую постановку задачи о движении фронта разрушения и определил время разрушения скручиваемого вала. Ю. Н. Работнов (1963) решил задачу о разрушении диска с отверстием по схеме хрупкого разрушения. При этом учитывалось влияние накопления поврежденности на скорость ползучести и, следовательно, на распределение напряжений. Позже Ю. Н. Работнов (1968) рассмотрел вопрос о влиянии концентрации напряжений на длительную прочность. При этом считалось, что распределение напряжений мало отличается от распределения напряжений в жестко-пластическом теле, но переменная величина степени поврежденности со фигурирует в условии пластичности, которое становится подобным условию равновесия неоднородной сыпучей среды.  [c.149]


Что касается линейной теории, то я нашел более удобным вместо того, чтобы по отдельности рассматривать различные частные случаи, возникающие в теории упругости, охватить их все сразу в рамках теории сильно эллиптических линейных систем. Разумеется, еще лучше было бы развить более общую теорию эллиптических систем (сильная эллиптичность— частный случай простой эллиптичности), но, понятно, такую программу невозможно было осуществить в рамках сравнительно короткой статьи. Тем не менее сильно эллиптические системы дают достаточную общность и позволяют получить большинство практически важных приложений. В связи с этими системами рассмотрены задачи о распространении и диффузии волн, а также интегро-дифферен-циальные уравнения. Для всех них установлены теоремы существования в, наиболее интересных случаях. Среди многочисленных приложений общей теории отметим здесь теорему существования для одной нестандартной краевой задачи, связанной с равновесием неоднородной>упругой среды.  [c.8]

Задачи равновесия для неоднородной среды  [c.84]

До сих пор мы имели в виду статические задачи. Мы видели, что существующие здесь трудности преодолены в методе Фредгольма лишь частично. Легко предвидеть новые трудности, которые возникают при переходе к динамическим задачам даже в простейшем случае установившихся колебаний Эти трудности возрастают еще более, если вместо однородных тел рассматриваются упругие тела, составленные из отдельных, сопряженных друг с другом тем или иным способом частей с различными упругими свойствами. Изучая колебания или равновесие подобных кусочно-неоднородных тел, мы должны считаться не только с граничными условиями типа первой, второй, третьей или четвертой граничных задач на геометрической границе тела, но и с условиями сопряжений отдельных частей, нз которых тело составлено, с условиями контактов на границах раздела различных сред.  [c.11]

В стационарных задачах мы встречаемся с системами второго порядка как с постоянными, так и с переменными коэффициентами (однородные и неоднородные тела), со скалярными уравнениями второго порядка (например, в задачах Сен-Венана о кручении или в теории мембран), уравнениями четвертого порядка (равновесие тонких пластин), уравнениями восьмого порядка (равновесие оболочек). Для каждого из этих случаев надо рассматривать несколько краевых условий, соответствующих различным возможным физическим ситуациям. Далее, каждой стационарной задаче теории упругости отвечает динамическая задача, связанная с изучением колебаний в рассматриваемой упругой системе. Сверх того, в термодинамике сплошных сред требуется изучать некоторые задачи параболического типа, связанные с диффузией. Кроме всего этого, при исследовании материалов с памятью нужны теоремы существования для определенных  [c.7]



Смотреть страницы где упоминается термин Задачи равновесия для неоднородной среды : [c.149]    [c.36]    [c.699]   
Смотреть главы в:

Теоремы существования в теории упругости  -> Задачи равновесия для неоднородной среды



ПОИСК



Неоднородность

Среда неоднородная



© 2025 Mash-xxl.info Реклама на сайте