Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Притяжение однородным эллипсоидом внешней точки

Притяжение однородным эллипсоидом внешней точки 123  [c.2]

ПРИТЯЖЕНИЕ ОДНОРОДНЫМ ЭЛЛИПСОИДОМ ВНЕШНЕЙ ТОЧКИ 123  [c.123]

ПРИТЯЖЕНИЕ ОДНОРОДНЫМ ЭЛЛИПСОИДОМ внешней точки 127  [c.127]

Метод Шаля. Французский геометр Шаль, опираясь на теоремы Ньютона, Маклорена и Лапласа, дал геометрическое решение задачи о притяжении однородным сплошным эллипсоидом внешней точки. Изложением метода Шаля теперь и займемся.  [c.763]


Чтобы подобрать искомое решение уравнения Лапласа, возьмем за исходный пункт известное выражение для ньютонова потенциала притяжения однородным эллипсоидом (2.1) внешней точки х, у, z)  [c.362]

Движение планеты, составленной из концентрических однородных сферических слоев. — В теории потенциала доказывается, что в рассматриваемом случае силы ньютонова притяжения от внешней точки, действующие на планету, имеют единственную равнодействующую, приложенную в центре тяжести планеты, и эта равнодействующая такова, как если бы вся масса планеты была сосредоточена в этом центре. Таким образом, силы притяжения со стороны Солнца и других планет имеют единственную равнодействующую, приложенную в центре тяжести планеты. Если учитывается только действие Солнца, то центр тяжести планеты движется по траектории, представляющей собой коническое сечение, одним из фокусов которого является Солнце. Движение планеты около своего центра тяжести есть движение по Пуансо. При нашем предположении эллипсоид инерции приводится к сфере, все диаметры которой являются главными осями инерции, а следовательно, представляют собой постоянные оси вращения. Движение планеты около своего центра тяжести приводится поэтому к равномерному вращению вокруг оси, имеющей постоянное направление в планете и в пространстве. В этом случае мы не имеем явлений прецессии и нутации.  [c.201]

Планета, которая преаполагается состоящей из концентрических однородных сферических слоев. В теории притяжения доказывается, что если планета является твердым телом, образованным из концентрических однородных сферических слоев, то ньютоновские силы, с которыми какая-нибудь внешняя точка р. притягивает к себе элементы планеты, имеют равнодействующую, приложенную в центре тяжести О и равную притяжению точкой р всей массы планеты, если предполагать ее сосредоточенной в точке О. Тогда, каково бы ни было число притягивающих точек р, результирующая сил притяжений, действующих на планету, будет приложена в точке С и будет такой же, как если бы вся масса планеты была сосредоточена в этой точке. Движение планеты вокруг своего центра тяжести будет тогда таким же, как движение твердого тела вокруг неподвижной точки С, когда силы имеют равнодействующую, проходящую через эту точку. Но в данном случае эллипсоид инерции для точки О будет, очевидно, сферой и любая ось, проходящая через точку О, будет главной. Следовательно, движение вокруг точки О будет представлять собой вращение вокруг оси, сохраняющей постоянное направление в пространстве и в теле. Явлений прецессии и нутации не будет.  [c.210]


Существенного успеха по сравнению с тем, что было достигнуто геометрическими методами, впервые добился Лежандр в мемуаре Исследования о прйтяжении однородных эллипсоидов , представленном Парижской академии в 1785 г. несомненно, работа была закончена на год или два года раньше. Лежандр справедливо указывает, что хотя Лагранж рассмотрел задачу о притяжении во всей общности, но фактически провести интегрирование ему удалось только в тех случа ях, которые были уже исследованы Маклоре-ном. Лежандр доказывает новую важную теорему если известна сила притяжения телом вращения любой внешней точки на продолжении оси тела, то она известна для любого положения внешней точки. Это позволяет ему обобщить теорему Маклорена о софокусных эллипсоидах вращения (обобщение теоремы на случаи трехосных софокусных эллипсоидов позже удалось Лапласу). Лежандр впервые вводит в этом мемуаре разложение в ряд по полиномам, названным его именем (по сферическим функциям), и здесь же впервые появляется силовая (или потенциальная) функция, но с указанием, что эта идея принадлежит Лапласу. По оценке Тодхантера, ни один мемуар в истории рассматриваемого вопроса не может соперничать с этим мемуаром Лежандра. В течение сорока лет средства анализа, даже в руках Даламбера, Лагранжа и Лапласа, не продвинули теорию притяжения эллипсоидов дальше того рубежа, на который вышла геометрия Маклорена.... Лежандр обобщил главный результат этой геометрии... Введение и применение круговых функций начинает новую эру в математической физике.  [c.152]

Второй метод вычисления притяжения однородчого шара. Теперь дадим очень простой способ нахождения притяжения сплошного однородного шара на внешнюю точку при условии, что оно известно для внутренних точек. Эта задача решается очень просто, и мы приводим ее только потому, что соответствующий прием имеет большое значение в гораздо более трудном случае притяжения эллипсоидов и составляет знаменитый метод Айвори.  [c.111]

Притяжение сплошного однородного эллипсоида на внешню.-о точку. -Метод Айвори. В случае внешней точки интегралы настолько сложны, что составляющие притяжения не могут быть найдены прямым интегрированием, если не прибегать к разложению в ряды. Эти интегралы вычисляют косвенным путем, выражая их через составляющие притяжения вспомогательного эллипсоида на внутреннюю точку. Этот прием составляет метод Айвори ).  [c.120]


Смотреть страницы где упоминается термин Притяжение однородным эллипсоидом внешней точки : [c.374]    [c.130]    [c.194]   
Смотреть главы в:

Небесная механика Основные задачи и методы Изд.2  -> Притяжение однородным эллипсоидом внешней точки



ПОИСК



Однородность тел

Притяжение

Притяжение эллипсоида

Точка внешняя

Эллипсоид



© 2025 Mash-xxl.info Реклама на сайте