Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжева механика на многообразиях

ЛАГРАНЖЕВА механика НА МНОГООБРАЗИЯХ  [c.69]

Рассматривается применение теории дифференцируемых многообразий к лагранжевой механике. Введение симплектической структуры на касательном расслоении конфигурационного пространства позволяет задать лагранжеву динамическую систему, соответствующую голономной склерономной механической системе как векторное пол з на касательном расслоенном пространстве. Обобщение этих понятий на более сложныс неголономные системы, требующее ряда дополнительных построений, составляет основное содержание статьи.  [c.127]


Лагранжева механика описывает движение механической системы при помощи конфигурационного пространства. Конфигурационное пространство механической системы имеет структуру ди ференцируемого многообразия. На дифференцируемом многообразии действует группа диффеоморфизмов. Основные понятия и теоремы лагранжевой механики (даже если они и формулируются в терминах локальных координат) инвариантны относительно этой группы ).  [c.52]

Вариации и экстремали. Лагранжева система на гладком многообразии М задается одной единственной функцией L TMxA- -R, где Д —интервал оси времени R = i - Точку еЛ будем называть положением системы, а касательный вектор v TqM — скоростью В положении q. Пара q, v называется еще состоянием системы. В лагранжевой механике многообразие М принято называть пространством положений, касательное расслоение ТМ — пространством состояний, L — функцией Лагранжа или лагранжианом, а dim М — числом степеней свободы.  [c.20]

Напомним сначала основные принципы лагранжевой механики. Положения механической системы находятся в однозначном соответствии с точками конфигурационного пространства — гладкого многообразия М". Число п = dimM называется числом степеней свободы механической системы. Локальные координаты (ж1,...,ж ) = ж на М" в механике обычно называют обобщенными или лагранжевыми координатами.  [c.52]

В 1851 г. Сильвестр впервые ввел понятие об инвариантах алгебраических форм. В так называемой Эрлангенской программе Ф. Клейн, сформулировал принцип, что каждое многообразие (в том числе различные геометрии) задается системой инвариантов относительно некоторой группы преобразований. С другой стороны, в 70-х годах XIX в. Софус Ли установил связь между интегралами дифференциальных уравнений и инвариантами непрерывных групп. Отсюда вытекает возможность интерпретации механики в терминах непрерывной группы и ее инвариантов. Основываясь на объединении вариационного исчисления и методов теории групп Ли, Э. Нетер в 1918 г. дала алгоритм, позволяющий найти систему инвариантов любой физической теории, формулируемой при помощи лагранжева или гамильтонова формализма.  [c.863]

Лагранжевы особенности — это особенности проекций лагранжевых многообразий на конфигурационное пространство. Такие особенности встречаются при исследовании решений уравнения Гамильтона — Якоби в целом, при изучении каустик, фокальных или сопряженных точек, при анализе распространения разрывов и ударных волн в механике сплошной среды, а также в задачах, приводящих к коротковолновой асимптотике (см. добавление И).  [c.415]



Смотреть страницы где упоминается термин Лагранжева механика на многообразиях : [c.55]    [c.72]    [c.74]    [c.76]    [c.82]    [c.84]    [c.86]    [c.88]    [c.123]    [c.127]   
Смотреть главы в:

Математические методы классической механики  -> Лагранжева механика на многообразиях



ПОИСК



Лагранжева механика

Многообразие



© 2025 Mash-xxl.info Реклама на сайте