Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые другие системы канонических элементов

В предыдущем параграфе была подробно рассмотрена каноническая система Ь, О, Я, I, g, Ь, которую в дальнейшем мы будем считать основной канонической системой. Можно указать несколько других систем канонических элементов, которые могут оказаться удобными в некоторых частных случаях (например, малые эксцентриситеты, малые наклоны и т. д.). Прежде] всего из (4.5.1) имеем  [c.121]

Так как из какого-либо полного решения уравнения в частных производных первого порядка выводятся все остальные полные решения, теорема, которую я здесь сформулировал, дает также решение другой интересной задачи, а именно по некоторой данной системе элементов, которые связаны с временем в возмущенном движении системой дифференциальных уравнений в канонической форме, найти все другие системы элементов, которые обладают тем же свойством.  [c.292]


Замечание 4. В некоторых работах применялись и другие системы канонических элементов (Леви-Чивита, Хилл, Де Сит-тер, Андуайе и др.), но они не получили большого распростра-нения в небесной механике (см. [3] — [4]).  [c.341]

Замечание 2. Элементы Делоне и первая система Пуанкаре обладают некоторой однородностью элементы С, Н Ь, Р1, р2 имеют размерность секторнальной скорости, а элементы I, д. Л, К, С01, Ш2 являются угловыми переменными. Другими словами, эти канонические элементы принадлежат к так называемым каноническим переменным действие — угол .  [c.341]

Получив далее некоторую равномерность распределения вероятностей в новой координатной системе, мы сможем сразу распространить эту вероятность на старую координатную систему, так как величина элемента объема фазовой области есть инвариант канонического преобразования. Будем считать, поэтому, что ds =, A zq — С/) S dx , где А = onst. Легко видеть, что пространство, состоящее из направленных элементов линий полученного риманова пространства, будет эквивалентно фазовому пространству. Действительно, точка фазового пространства р ) может быть определена как соответствующая точка конфигурационного пространства (х ) вместе с заданным вектором скоростей (х ). Некоторому интервалу координат и импульсов фазового пространства будет соответствовать в пространстве F некоторый интервал объема dm , некоторый интервал угла d

полной энергии мы получим, что в силу размешивающегося характера геодезического движения в О, доля этих точек, попадающая в некоторый интервал dm d p, будет зависеть лишь от величины рассматриваемого интервала и будет ему пропорциональна. Все рассматриваемые точки фазового пространства, т. е. точки с добавочной характеристикой — длиной направляющегося вектора, соответствующие каждому данному Zq, принадлежащему интервалу попадут внутрь интервала dr. Поэтому, определяя во всех точках допускаемую в них начальной неопределенностью полной энергии системы dz величину dr, одинаковую для всех точек (так как dz == получим, что все точки начальной области равномерно распределятся внутри слоя заданного dr, т. е. равномерно распределятся внутри слоя заданной неопределенности однозначных интегралов движения. (Распределение будет равномерным при данном dr, т. е. сделается равномерным по всем параметрам, кроме г, по которому оно будет определяться начальным распределением, так как очевидно, что по параметру г размешивания не будет, поскольку области фазового пространства, соответствующие неперекрывающимся dz, бесспорно не будут переходить друг в друга.)  [c.186]



Смотреть страницы где упоминается термин Некоторые другие системы канонических элементов : [c.425]   
Смотреть главы в:

Теория движения искусственных спутников земли  -> Некоторые другие системы канонических элементов



ПОИСК



Вид канонический

Другие системы канонических элементов

Каноническая система элементов

Некоторые другие элементы

Система каноническая



© 2025 Mash-xxl.info Реклама на сайте