Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы исследования солевой коррозии

МЕТОДЫ ИССЛЕДОВАНИЯ СОЛЕВОЙ КОРРОЗИИ  [c.196]

Рассмотрены следующие аспекты применения методики вращающегося дискового электрода с кольцом 1) качественный и количественный анализ продуктов коррозии, в том числе и нестабильных промежуточных продуктов коррозии, и контроль за их превращениями в растворе с целью изучения путей и стадийности процесса 2) исследование механизма коррозии сплавов 3) исследование механизма коррозии металлов, покрытых пассивирующими окисными или солевыми слоями, с целью выяснения механизма пассивирующего действия этих слоев. Показана эффективность метода в условиях, когда на электроде параллельно протекают какие-либо другие (химические или электрохимические) процессы.  [c.216]


Качественные исследования по влиянию солевой коррозии па статическую усталость титановых сплавов были проведены на листовом материале с применением методов, широко используемых для изучения коррозии под напряжением других материалов.  [c.196]

Разноречивость опытных данных, вероятно, объясняется тем, что в большинстве случаев группы авторов работали над различными сплавами и применяли различные методы исследования. При разработке гипотез солевой коррозии большинство авторов предполагало коррозионное разрушение только титана, не учитывая возможности участия в этих процессах и легирующих компонентов.  [c.216]

В книге представлены оригинальные исследования процессов коррозии при высоких температурах в атмосфере, металлических и солевых (галогенных, карбонатных и др.) расплавах. В разделах сборника рассмотрены теоретические аспекты процесса высокотемпературного окисления металлов и полупроводников, закономерности газовой коррозии титана, циркония, ванадия, вольфрама и др., коррозия металлов в расплавах, методы получения, свойства и закономерности коррозии защитных жаростойких силицидных, окисных и хромовых покрытий. Показаны методы защиты конструкционных материалов от высокотемпературной коррозии.  [c.2]

Ускоренные атмосферные испытания. Лабораторные методы исследования атмосферной коррозии были разработаны раньше многих других лабораторных методов коррозионных испытаний и продолжают непрерывно совершенствоваться. Это можно объяснить, с одной стороны, тем, что в практике атмосферной коррозии подвергается около 80% металлических конструкций и доля коррозионных потерь при атмосферной коррозии превышает половину общих потерь [52], а с другой, тем, что механизм атмосферной коррозии является сложным и изучен далеко не полностью. Несмотря на кажущуюся простоту, воспроизведение в лаборатории условий атмосферной коррозии встречает определенные трудности, которые в значительной мере связаны с тем, что атмосферной стойкости вообще не существует, ибо одни и те же металлы в разных местах корродируют по-разному, так, например, коррозионная стойкость железа может изменяться в зависимости от атмосферы примерно в сто раз 3]. Большое значение имеет влажность воздуха, количество осадков, характер и количество загрязнений, температура и другие факторы. В зависимости от соотношения этих факторов естественную атмосферу делят на сельскую, городскую, индустриальную, сельскую морскую, городскую морскую, морскую, тропическую и тропическую морскую. Подробная характеристика этих типов атмосфер приводится в работе f5]. В соответствии с механизмом процесса атмосферная коррозия классифицируется [52, 53] на мокрую (относительная влажность воздуха около 100%), влажную (относительная влажность ниже 10%) и сухую (полное отсутствие влаги на поверхности металла). В двух первых случаях коррозия шротекает в соответствии с законами электрохимической, а в третьем—в соответствии с законами химической кинетики. Часто их трудно разграничить. В этой связи одним из первых условий воспроизведения в лаборатории атмосферной коррозии является создание на поверхности металла тонкой пленки влаги, имеющей постоянную или переменную толщину. Последнее, по-видимому, более точно отвечает практике. Такие условия в лаборатории достигаются с помощью влажных камер, приборов переменного погружения или солевых камер. Наиболее простая влажная камера — обычный эксикатор, на дно которого налита вода (рис. 13).  [c.64]


В дополнение к металлографическому методу исследования недавно были разработаны ускоренные испытания для определения чувствительности к расслаивающей коррозии сплавов серии 5000 [105—107]. Один из методов классифицируется как испытание в морской соли, подкисленной уксусной кислотой. Метод заключается в выдержке образцов в солевом тумане в течение 1 нед при 49 °С. Испытания включают цикл непрерывного обрызгивания в течение 30 мин с последующим 90-мин циклом без разбрызгивания. Этот метод, принятый в настоящее время вооруженными силами США, рекомендуется Алюминиевой ассоциацией как метод для определения сопротивления расслаивающей коррозии сплавов системы А1 — Mg, предназначенных для изготовления конструкций корпусов лодок и кораблей [106, 106а].  [c.229]

При использовании приборов переменного погружения для иммитации в лаборатории. атмосферных испытаний, по-видимому, можно отдать предпочтение колесам переменного погружения, которые позволяют более точно воспроизводить условия практики. При параллельном испытании в разных солевых растворах предпочтительнее пользоваться аппаратом переменного погружения. Некоторое усовершенствование описанных методов лабораторного исследования атмосферной коррозии, особенно применительно к испытаниям в морской атмосфере, вносит применение влажных камер, в которых создается солевой туман путем распыления соответствующих растворов. Камеры изготовляют из коррозионностокких материалов стекла, органического стекла, фарфора, цемента, дерева, гуммированного металла и др. Дверцы или крышки зак )ываются с помощью прокладок или резинового затвора. Объем камеры может коле-  [c.66]

В тех случаях, когда при коррозии на поверхности металла образуется окисный (или солевой) слой в виде сплошного, изолирующего ее от раствора чехла, дальнейшее анодное окисление металла непременно будет включать стадию доставки участников реакции через этот слой. Поскольку перенос вещества через твердую фазу в обычных условиях процесс довольно медленный [1], можно предполагать, что стадия переноса через слой окисла, по крайней мере в некоторых случаях, окажется наиболее медленной стадией, определяющей скорость процесса окисления металла в целом. Экспериментальное выявление концентрационной поляризации в твердой фазе представляет, однако, известную трудность. Прямые методы обнаружения концентрационной поляризации, применяющиеся при исследовании реакций с переносом реагентов в растворе (по влиянию конвекции или по изменению концентрации реагентов), в данном случае непригодны. Из косвенных, релаксационн ых методов исследования высокочастотные методы имеют ограниченную применимость. Они не могут обнаружить концентрационную поляризацию тогда, когда для ее проявления требуется время, более длительное, чем длительность единичного импульса, которая у этих методов очень мала. При импедансном методе, например, она не превышает нескольких миллисекунд, так как нижний предел рабочих частот у этого метода не ниже 200 гц. Следовательно, в случаЖс, когда для проявления концентрационной поляризации необходимо, например, несколько секунд или минут, этот метод обнаружить ее не сможет. Такие случаи, оказалось, не так уже редки на практике, и применение к ним высокочастотных методов может привести к ошибочным выводам относительно природы скорость определяющей стадии процесса [2]. Вероятность возникновения такого случая увеличивается, как увидим ниже, при замедлении электрохимической стадии процесса, т. е. при его истинной пассивации . Поскольку именно пассивные металлы представляют для нас наибольший интерес, требовалось изыскать метод, который был бы в принципе свободен от указанного ограничения. В поисках его мы обратили внимание на метод потенциостатической хроноамперометрии, предложенный и апробированный на реакциях, протекающих с пе-  [c.80]

Фактически в результате катодной защиты среда изменяется настолько, что и после отключения тока поляризации скорость коррозии остается меньше, чем до поляризации. В этом причина последействия катодной поляризации. Особенно ярко последнее отмеченное явление проявляется при защите морских гидротехнических сооружений, когда в результате местного подщелачивания на защищаемой поверхности образуются солевые отложения. Образование солевых осадков позволяет снизить защитный ток или периодически выключать катодную защиту, вследствие чего экономится электроэнергия. Исследование явлений подщелачивания и процессов осаждения гидроокисно-карбонатных слоев на поверхности металла при катодной поляризации имеет несомненный практический и теоретический интерес. Детальное изучение распределения pH в приэлектродном слое затруднено из-за отсутствия достоверного метода, однако на ооновании косвенных способов удалось изучить основные факторы, определяющие процесс подщелачивания.  [c.45]


Для создания беспродувочных систем оборотного водоснабжения и для использования в них сточных вод необходимо проведение исследований по определению требований к качеству очищенных сточных вод, оптимальных вариантов очистки стоков, а также методов их обработки в целях предотвращения коррозии, солевых отложений, биологических обрастаний трубопроводов и оборудования.  [c.117]


Смотреть страницы где упоминается термин Методы исследования солевой коррозии : [c.176]    [c.304]   
Смотреть главы в:

Механические свойства титана и его сплавов  -> Методы исследования солевой коррозии



ПОИСК



Коррозия солевая

Методы исследования



© 2025 Mash-xxl.info Реклама на сайте