Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термометры. Основные понятия

ТЕРМОМЕТРЫ. ОСНОВНЫЕ ПОНЯТИЯ  [c.28]

Уточнив основные понятия, можно теперь перейти к формулированию главного для термометрии закона — нулевого закона термодинамики  [c.14]

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]


Для правильного понимания термометрии очень важно ясно представлять себе, что понимается под тепловым равновесием и тепловым контактом. Мы определим оба понятия, исходя из представлений, которые, строго говоря,справедливы лишь в некотором идеализированном мире, где возможно и изолировать некоторую систему и в то же время наблюдать ее приближение к конечному состоянию теплового равновесия. Однако и в реальном мире можно, соблюдая необходимые предосторожности, сколь угодно близко подойти к идеализированным условиям, и это служит одной из основ для применения классической термодинамики. Всегда можно представить себе такую реальную систему, которая в одном или нескольких отношениях (но не во всех) приближается к тем идеальным системам или условиям, для которых формулируются основные законы термодинамики. В этих случаях все предсказания классической термодинамики подтверждаются без исключения.  [c.13]

Во второй половине XIX в. применение вероятностно-статистического подхода позволило на новой основе получить многие теоретические результаты. Из них для термометрии важными оказались обобщение законов излучения, полученное Планком, и фундаментальное уравнение Найквиста, связывающее основные параметры шумовых явлений. Эти результаты, наряду с идеальным газовым термометром, могут служить основой для абсолютной термодинамической шкалы. Последующее развитие вероятностно-статистического метода привело к возникновению понятий о неравновесных и отрицательных абсолютных температурах.  [c.14]

Введение тепловых единиц потребовало, как и в области механики, прежде всего установления терминологии, относящейся К основным понятиям термометрии. Употребляемые термины отражали связь С принятой тогда на Западе латинской (отчасти греческой) терминологией. В Генеральной инструкции , данной еще в 1727 г. от Академии наук астроному де ля Кройеру, фигурируют градусы ( градусы теплоты , градусы стужи ), термометр , Меркурий ( ртуть ), меркуриальный . Однако постепенно, наряду с этими терминами, стали употреблять и такие, которые образовали от русских слов степень , тепломер . Наряду с термином температура у М. В. Ломоносова встречаются выражения степень огня и напряженность огня , что довольно хорощо отвечает смыслу слова температура иногда менее точно Ломоносов, как и другие академики, пользовался словом теплота ( для уверения о равной теплоте по сторонам поставлены два термометра ), хотя он уже указывал на необходимость различать температуру и количество теплоты. Даже в последней четверти XVIII в. в изданиях Академии наук нередко употребляли слово жар в тех случаях, где ныне употребляется температура так, результаты обработки измерений температуры в Петербурге за период с 1 мая по 1 ноября 1783 г. были охарактеризованы следующим образом средний жар, выведенный из  [c.118]


Примером вторичной термометрии, которая тем не менее Tia T весьма полезную информацию для первичной термометрии, служит магнитная термометрия. Магнитная термометрия очень тесно связана с первичной термометрией и обсуждается в гл. 3, посвященной в основном первичной термометрии. Магнитная термометрия не является первичной, поскольку в уравнение состояния входит до четырех постоянных, которые должны быть определены для конкретного термометра. Но после того, как эти постоянные будут найдены по другому термометру в некотором интервале температур, магнитная термометрия позволяет получить весьма надежные данные о гладкости результатов первичной термометрии. Смысл используемого понятия гладкость в данном контексте разъясняется в гл. 2.  [c.35]

Длительности нестационарных процессов, в которых необходимо исследование температурной динамики, лежат в очень широком интервале, который можно грубо ограничить рамками от 10 до 10 с. В наиболее быстрых исследуемых процессах, дляш,ихся в течение фемто-и пикосекунд, само понятие температуры требует суш,ественных уточнений и оговорок, поскольку веш,ество в таких процессах не находится в состоянии термодинамического равновесия. Пространственное разрешение некоторых методов термометрии составляет 1 мкм (например, для диагностики биологических клеток созданы термопары, диаметр спс1Я которых 1 мкм), однако для решения ряда задач требуется намного более высокое разрешение. С помощью многочисленных методов измеряют температуры в диапазоне от 10 до 10 К. В области температур в ЮООч-1500 К наиболее распространенным методом измерения является в настоящее время радиационная термометрия. Для измерений при 0 1 К применяются главным образом методы, основанные на температурной зависимости парамагнитных свойств твердых тел [1.3]. В широком диапазоне температур может использоваться шумовая термометрия [1.4], для применения этого метода необходима качественная и чувствительная электронная аппаратура, а регистрируемый сигнал не должен содержать составляющих, происхождение которых имеет нетепловую природу. Расширение диапазона измеряемых температур, повышение точности, быстродействия и удобства применяемых методов и средств термометрии являются основным мотивом создания новых методов и измерительных приборов.  [c.8]

Второй закон термодинамики. Одной из основных и фундамен-талъных характеристик любой термодинамической системы является то, насколько она холодна или горяча в данный момент времени. Степень охлаждения или нагрева описывают с помощью понятия температуры. В классической термодинамике понятие температуры вводят для равновесного состояния термодинамической системы. При этом постулируют, что две системы, каждая из которых находится в равновесии с третьей системой, находятся в равновесии и между собой. Можно показать, что равновесие трех систем означает существование у них для задания состояния термодинамиче ской системы общего переменного, называемого температурой. Любая из этих трех систем может играть роль термометра, который показывает температуру на некоторой удобной, но произвольной шкале. Таким образом, температура Т — вещественное число, показываемое термометром.  [c.74]

В течение полустолетия при расчете температур пользуются уравнением Каллендара. Однако недавно, когда было понято, что прецизионные термометры сопротивления можно эталонировать в температурах, отличных от точек льда, кипения воды, серы и кислорода, стало ясно, что выгоднее всего пользоваться основным уравнением.  [c.391]

Подойдем теперь к вопросу с другой точки зрения и в качестве основной величины выберем 2 ( ). Здесь мы не интересуемся статистическим рассмотрением механических состояний системы наша цель — выяснить поведение макроскопических переменных. Это статистика совсем иного типа ), не использующая явно механических величин и понятий, хотя в специальных случаях мы можем представить ее и в такой более привычной форме. Основная проблема состоит в следующем если производится измерение температуры, то физические условия, необходимые для реализации микроканонического ансамбля, не сохраняются вследствие обмена энергией между системой и термометром. Возникает вопрос как правильно описывать систему в том случае, когда температура вводится в качестве независимой переменной Мы постулируем, что в указанных условиях система описывается образом функции 2 ( ) при преобразовании Лапласа — Стильтьеса ).  [c.41]



Смотреть главы в:

Основные термины в области температурных измерений  -> Термометры. Основные понятия



ПОИСК



Термометр

Термометрия



© 2025 Mash-xxl.info Реклама на сайте