Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы первой группы периодической системы

МЕТАЛЛЫ ПЕРВОЙ ГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ  [c.80]

Индий, таллий, галлий и германий относятся к рассеянным редким металлам. Первые три из них являются элементами 3-й группы, а германий - 4-й группы периодической системы.  [c.69]

Палладиевые припои. Палладиевые припои, несмотря на их дороговизну и дефицитность, в последнее время интенсивно исследуют и рекламируют. Палладий в качестве основы припоев интересен во многих отношениях. Во-первых, он менее дефицитен, чем другие металлы платиновой группы во-вторых, образует непрерывный ряд твердых растворов с металлами первой (серебро, медь, золото) и восьмой (железо, кобальт, никель) групп периодической системы, а со многими другими элементами образует относительно широкую область твердых растворов.  [c.139]


Способность палладия образовывать непрерывный ряд твердых растворов с металлами группы железа и ограниченные твердые растворы с металлами пятой и шестой групп периодической системы (Nb, Та, Мо, W), в противоположность металлам первой группы (Ag, Си, Аи), позволяют палладиевым сплавам конкурировать с никелевыми припоями при пайке жаропрочных сплавов и серебряно-медными припоями при пайке тугоплавких сплавов. В последнее время за рубежом наблюдается тенденция к замене известного эвтектического припоя, содержащего 72% Ag и 28% Си, а также припоев на его основе при пайке вакуумных приборов (в электронике, радиотехнике и т. д.) сплавами, содержащими палладий упругость пара серебра при температуре его плавления 960° С равна 2,65-10 мм рт ст., а палладия при температуре его плавления 1552° С 1,03-10 мм рт. ст.  [c.139]

Способность палладия образовывать непрерывный ряд твердых растворов с металлами группы железа и ограниченные твердые растворы с металлами пятой и шестой групп периодической системы (ЫЬ, Та, Мо, W) в противоположность металлам первой группы (Ад, Си, Аи) позволяет палладиевым сплавам конкурировать с никелевыми припоями при пайке жаропрочных сплавов и серебряно-медными припоями при пайке тугоплавких сплавов. В последнее время за рубежом заметна тенденция к замене известного эвтектического припоя, содержащего 72% Ад и 28% Си, а также припоев на его основе при пайке вакуумных приборов, (в электронике, радиотехнике и т. д.), сплавами, содержащими  [c.234]

Факт снижения температуры плавления нитридов и окислов металлов IV—VI групп по сравнению с температурой плавления карбидов объясняется доминирующей ролью связей металл — неметалл для нитридов и окислов по сравнению с карбидами, для которых характерно превалирующее влияние связи металл—металл. Кроме того, высокая температура плавления является, в первом приближении, мерой (качественной) химического сродства между металлом и неметаллом. Поэтому соединения металлов IV—VI групп Периодической системы элементов, обладающих наибольшей температурой плавления, можно рассматривать и как наиболее устойчивые (в термодинамическом смысле) покрытия, способные значительно противостоять твердофазным и жидкофазным диффузионным реакциям, коррозии и окислению при повышенных температурах.  [c.39]

Первые три группы периодической системы, все побочные подгруппы и восьмая группа заняты металлами. В пределах главных групп периодической системы металлические свойства возрастают с увеличением порядкового номера (сверху вниз).  [c.274]


Надо сказать, что сведения об электропроводности, которые среди прочих характеристик веществ можно найти в существующих справочниках, не отвечают возросшим требованиям к качеству подготовки и характеру представления справочных данных. Настоящая книга является, по-видимому, первой серьезной попыткой заполнить пробел в данной области. В ней систематизирована и обобщена информация о температурной зависимости удельного электрического сопротивления переходных металлов побочных подгрупп четвертой, пятой и шестой групп периодической системы, т. е. металлов, составляющих основу высокотемпературных сплавов.  [c.3]

В периодической системе Менделеева наблюдается интересная закономерность изменения валентности. Элементы первого столбца — щелочные металлы и группа меди — являются в основном одновалентными, элементы второго столбца — двухвалентными и т. д. Редкие земли, располагающиеся в третьем столбце, должны быть трехвалентными, что в основном справедливо.  [c.190]

При последовательном переходе от атома водорода к другим элементам периодической системы количество электронов возрастает в соответствии с их атомным номером, причем электроны сначала занимают все места с наименьшими уровнями энергии, т. е. последовательно все места в первой оболочке, затем во второй и т. д. Однако у некоторых элементов, получивших наименование элементов переходных групп, на внешней (валентной) оболочке уже появляются 1 или 2 электрона еш,е до того, как достроена -полоса предыдущей оболочки. К этим элементам относятся многие металлы, в том числе железо и карбидообразующие элементы. Ниже приводится интересующий пас участок периодической системы, включающий железо и карбидообразующие элементы. Внизу у химических символов цифрами указано число электронов на недостроенной -полосе.  [c.251]

К щелочным металлам относятся натрий, калий, цезий, литий и рубидий, представляющие собой элементы первой группы периодической системы. Натрий и калий получают электролизом расплавленных гидроокисей этих металлов или термическим путем из хлористых солей. Получение цезия, рубидия и лития базируется на восстановлении их двухромовокислых (СзгСгзОу РЬ СгаО,) или хромовокислых солей (СЗаСгО, КЬгСг04 и Ы СгО ) металлическим цирконием.  [c.273]

Перед инертными газами располагаются галогены (элементы VII группы периодической системы со значением первого ионизационного потенциала от 10 до 18 эВ) —F, С1, Вг, J, у которых не хватает одного электрона для образования устойчивых электронных оболочек ближайших к ним атомов инертных газов, поэтому они легко присоединяют к себе электрон, образуя соответствующие отрицательные ионы — анионы F , С1 , Вг- J-. Энергию Э, освобождаюш,уюся при присоединении электрона к нейтральному невозбужденному атому с образованием аниона, называют энергией сродства атома к электрону. Наибольшим сродством к электрону обладают атомы галоидов F — 3,4 эВ, С1 — 3,6 эВ, Вг — 3,4 эВ, J — 3,1 эВ. С понятиями потенциала ионизации и энергии сродства к электрону тесно связана ионная валентность, определяемая как число электронов, которое может терять или приобретать атом. Щелочные металлы положительно одновалентны, поскольку они содержат на один электрон больше, чем атомы соответствующих ближайших инертных элементов, например ионная валентность атома Na равна -f 1. Атомы галоидов отрицательно одновалентны, у них не хватает одного электрона для образования устойчивой оболочки ближайших атомов инертных газов. Так, для атома С1 ионная валентность равна —1. Аналогично атомы II группы, теряя два электрона, могут также образовывать ионы с электронной структурой ближайших атомов инертных газов Be +, Mg-+, Са2+, Sf2+, и, следовательно, эти атомы обладают положительной валентностью, равной +2 атомы III группы, теряя три электрона, могут образовывать ионы с валентностью +3 и т. д.  [c.57]

Данное сообщение относится к серии работ [1—3], посвященных изучению высокотемпературных превращений в органосиликатных модельных композициях с продуктом предварительной термообработки хризотилового асбеста (ППТХА 700 °С, 5 ч) как силикатной составляющей материала в исходном состоянии. Выбор диоксидов титана, циркония и гафния в качестве оксидных компонентов сделан, исходя из двух соображений. С одной стороны, первые два применяются при изготовлении промышленных и опытных марок органосиликатных материалов (OGM), а вся триада образована переходными металлами, входящими в побочную подгруппу IV группы Периодической системы элементов. С другой стороны, гафний непосредственно следует за лантаноидами, и поэтому сопоставительное исследование композиций, содержащих НЮа и оксиды редких земель, может представить интерес для выяснения влияния заполнения 4/-орбитапей на свойства OGM.  [c.206]


Первое направление — препаративное и физико-химическое изучение процессов комплексообразования в системах металл подгруппы титана или пятой группы периодической системы — лиганд (среда — преимущественно аминоспирт, фенолы и их производные). Близко примыкают к названным работам электро-химические исследования неводных сред. Выполнялись также исследования технологического характера. По отмеченной тематике опубликовано свыше 50 статей.  [c.170]

Первая группа — композиции, содержащие в полимере главным образом антифрикционные добавки (одну или несколько) наполнители со слоистой анизотропной структурой (графит, дисульфнд молибдена и другие халькогениды металлов V—VI групп Периодической системы элементов, нитрид бора и т. п.), антифрикционные полимеры (полиэтилен, фторопласт-4 и другие фторполимеры) и жидкие или пластичные смазочные материалы (АСП типа масляннтов ). Выбор типа и количества наполнителя проводится с учетом назначения АСП и условий его работы температуры, нагрузки, скорости скольжения, внешней среды и т. д.  [c.180]

Алюминий — химический элемент 111 группы Периодической системы элементов Д.И. Менделеева. Вследствие высокой химической активности алюминий в природе находится только в связанном виде. По содержанию в земной коре он (в форме его соединений) занимает первое место среди металлов — 8,13 % [1] и третье место после кислорода и кремния. По данным акад. А.Е. Ферсмана, насчитывается более 250 минералов алюминия, которые преимущественно сосредоточены вблизи поверхности земли, и более 40 % из них относится к алюмосиликатам.  [c.5]

Под твердыми металлами в наши дни общепринято пони- .ьать нитриды, карбиды, бориды и иногда силициды переходных металлов первой подгруппы четвертой, пятой и шестой групп периодической системы элементов. С одной стороны, они очень тверды и тугоплавки, а с другой, — они во многом напоминают металлы и, в частности, хорошо проводят тепло и электричество. С учетом их значения в технике важное значение приобретает и их сопротивление окислению. В общем случае по своему сопротивленшо окислению они намного уступают таким, напрп-мер, сплавам, как хромоникелевые.  [c.364]

Материалы об электрохимическом осаждении металлов изложены в том порядке, который эти металлы занимают в Периодической системе элементов, поскольку их свойства, в особенности свойства соответствующих химических соединений, оказывают влияние на свойства электролитов, характер химических и электрохимических реакций, протекающих при нанесении покрытий. Так, общность элементов первой группы — меди, серебра, золота проявляется в способности образовывать комплексные соединения с цианидом, дифосфатом и некоторыми другими лигандами, что нашло отражение в составах электролитов для электрохимического осаждения этих металлов. Приводимые в книге сведения  [c.3]

При последовательном переходе от атома водорода к другим эдементам периодической системы число электронов возрастает в соответствии с их атомным номером, причем электроны сначала занимают все места с наименьшими уровнями энергии, т. е. последовательно все места в первой оболочке, затем во второй и т. д. Однако у некоторых элементов, получивших наименование элементов переходных групп, на внешней (валентной) оболочке уже появляются I или 2 электрона еще до того, как достроена d-полоса предыдущей оболочки. К этим элемента.м относятся многие металлы, в том числе железо и карбидообразующие элементы.  [c.352]

VII группы в системах появляются интерметаллические соединения (систему титан — хром, в которой существует фаза Лавеса ТЮГа, можно рассматривать как свидетельство известного диагонального смещения переходных металлов первого большого периода периодической системы элементов). При переходе к металлам группы платины можно ожидать, что в этих системах должны существовать первичные растворы и интерметаллические соединения возможного состава TiaMe, TiMe и TiMej.  [c.176]

Поверхность Ферми лития известна плохо, поскольку при 77 К он испытывает так называемое мартенситное превращение и переходит в смесь кристаллических фаз. Поэтому о.ц.к. фаза существует лишь при температурах, которые слишком велики для наблюдения эффекта де Гааза — ван Альфена, а в низкотемпературной фазе нет кристалличности, необхрдимой для исследования с помощью эффекта де Гааза — ван Альфена. Натрий испытывает аналогичное превращевие при 23 К, однако при должной осторожности это превращение можно частично предотвратить, что позволило получить хорошие данные по эффекту де Гааза — ван Альфена для о.ц.к. фазы. (Мы также опустили из перечня щелочных металлов первый и последний элементы группы I А периодической системы твердый водород является диэлектриком (и поэтому не имеет моноатомной решетки Бравэ), хотя и высказываются предположения, что при очень высоких давлениях должна появляться металлическая фаза франций радиоактивен и имеет чрезвычайно короткий период полураспада.)  [c.283]


Смотреть страницы где упоминается термин Металлы первой группы периодической системы : [c.891]    [c.28]    [c.416]    [c.2]    [c.267]   
Смотреть главы в:

Электролитические и химические покрытия  -> Металлы первой группы периодической системы



ПОИСК



Первая группа

Периодическая система

Системы газ—металл



© 2025 Mash-xxl.info Реклама на сайте