Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О кручении полых призм

О КРУЧЕНИИ ПОЛЫХ ПРИЗМ  [c.279]

Законы кручения полых призм получаются по таким же формулам, что и законы кручения сплошных призм при условии ( 116—118), что уравнения внешнего контура сечения и внутреннего контура сечения или границы полости отличаются только значением постоянной.  [c.343]

Итак, если мы имеем полую призму, внутреннее и наружное основания которой составлены из этих кривых с одинаковой левой частью уравнения, то перемещение и при ее кручении получит выражение (276), найденное для сплошной призмы, и мы сможем определить по формулам и правилам главы IX крутящий момент и условия ее сопротивления.  [c.283]


Первые приложения общих уравнений равновесия упругих тел к конкретным задачам были осуществлены, по-видимому, в 1827—1828 гг. находившимися в то время на русской правительственной службе в Петербурге французскими инженерами Г. Ламе и Э. Клапейроном в их Мемуаре о внутреннем равновесии однородных твердых тел В этом мемуаре они рассмотрели задачи о растяжении бесконечной призмы, кручении бесконечного кругового цилиндра, равновесии шара под действием взаимного притяжения его частиц, равновесии полого кругового цилиндра и шара под действием внутреннего и внешнего давления. Далее они выписали некоторые интегралы (с четырех-  [c.54]

О кручении полого призм атического стержня эллиптического сечения. Тр. Грузинск. политехи, ин-та, № 1 (42), 1956, 107—112.  [c.688]

Как известно, задача о свободном кручении призматического стержня приводится к гармонической проб1леме, методы решения которой хорошо разработаны. Ранние работы по теории кручения стержней посвяш ены решению этой задачи в замкнутом виде или при помош и тригонометрических рядов к ним относятся статьи Б. Г. Галеркина, в которых исследовано кручение призмы с сечением в виде равнобедренного прямоугольного треугольника (1919) и призм параболического поперечного сечения (1924) ряд задач о кручении сечений, ограниченных алгебраическими кривыми, решен в работах Д. Ю. Панова (1935, 1937) и Д. Л. Гавры (1939) позднее кручением параболических призм занимался В, И. Блох (1959). Влияние радиальной трещины при кручении сплошного и полого валов изучено в статьях А. Ш. Локшина (1928) и В. Н. Лыскова (1930). Различным методам решения задачи теории кручения, включая и экспериментальные методы, посвящена монография А. Н. Динника, вышедшая в 1938 г-  [c.25]

Кручение (и изгиб) призматических стержней с полым прямоугольным сечением изучил в 1950 г. Б. Л. Абрамян в другой статье им исследован случай круглого вала с продольными полостями (1959) в работе Б. Л. Абрамяна и А. А. Баблояна (1960) исследовано кручение круглого стержня с продольными выточками или зубцами, имеющего центральную круглую полость. Тем же методом вспомогательных функций и сведением к бесконечным системам Н. О. Гулканян (1960) изучила кручение прямоугольной призмы с двумя симметричными прямоугольными полостями. В. С. Тоноян  [c.29]

До открытия общих уравнений существовала теория кручения и изгиба балок, ведущая свое начало от исследований Галилея и соображений Кулона. Проблемы, являющиеся предметом этих теорий, принадлежат к числу наиболее важных по своему практическому значению, так как многие проблемы, с которыми приходится иметь дело инженерам, в грубом приближении сводятся к вопросам сопротивления балок. Коши был первым исследователем, который пытался применить общие уравнения к проблемам этого рода и, хотя его исследование о кручении прямоугольной призмы 85] оказалось ошибочным, оно все же имело большое сторическое значение, так как он установил, что поперечные сечения не остаются Плоскими, Значение его исследований для практических приложений было невелико. Практические руководства первой половины прошлого столетня содержат теорию кручения, которая приводит к выводам, принадлежащим, как мы уже указывали. Кулону этот вывод состоял в том, что сопротивление кручению равно произведению упругой постоянной на величину угла закручивания, отнесенного к единице длины (степень кручения), и на момент инерции поперечного сечеиия. В отношении изгиба практические руководства этого времени следовали теории Бернулли-Эйлера (в действительности принадлежащей Кулону), согласно которой сопротивление изгибу связано только с растяжением и сжатием продольных волокон. Сен-Венану принадлежит заслуга приведения проблемы кручения и изгиба балок в связь с общей теорией. Он учитывал трудность нахождения общих решений и настоятельную необходимость получения в практических целях какой-либо теории, которая могла бы служить для определения деформаций в сооружениях ему было вполне ясно также, что только в очень редких случаях можно знать точное распределение нагрузки, приложенной к части какой-либо конструкции это привело его к размышлениям о методах, применявшихся к решению частных задач до того, как были получены общие уравнения. Таким образом о пришел к изобретению полу-обратного метода, который носит его имя. Многие из обычных допущений и выводов, оказываются верными, по крайней мере, в большинстве случаев следовательно, сохраняя некоторые из этих допущений и выюдов, можно упростить уравнения и получить их решения правда, пользуясь этими решениями, мы не можем удовлетворить любым наперед заданным граничным условиям однако же граничные условия практически наиболее важного типа могут быть удовлетворены.  [c.32]



Смотреть страницы где упоминается термин О кручении полых призм : [c.95]    [c.28]    [c.19]    [c.155]    [c.282]   
Смотреть главы в:

Мемуар о кручении призм Мемуар об изгибе призм  -> О кручении полых призм



ПОИСК



Кручение призмы

Полый вал, кручение его

Призма



© 2025 Mash-xxl.info Реклама на сайте